Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Geometry Model
2.2. Electrochemical Model
2.3. Momentum Conservation Model
2.4. Heat Transfer Model
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AK | Alkaline | ||
| CFD | Computational Fluid Dynamics | ||
| Cathode-GDL (CGDL) | Cathode Gas Diffusion Layer | ||
| Cathode-GDE (CGDE) | Cathode Gas Diffusion Electrode | ||
| Anode-GDL (AGDL) | Anode Gas Diffusion Layer | ||
| Anode-GDE (AGDE) | Anode Gas Diffusion Electrode | ||
| LSM | Lanthanum Strontium Manganite | ||
| PEM | Proton Exchange Membrane | ||
| SMR | Steam Methane Reforming | ||
| SOEC | Solid Oxide Electrolysis Cell | ||
| Symbols | |||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | ) | ||
| ) | Mole fraction of species n | ||
| ) | Mass fraction of species m | ||
| Number of electrons transferred | ) | ||
| Greek symbols | |||
| Thermal expansion coefficient | Dynamic viscosity | ||
| Charge transfer coefficient (anode/cathode) | Poisson’s ratio | ||
| Inertial resistance coefficient in porous media | Electric potential | ||
| Kronecker delta | Density | ||
| Entropy change per reaction | Stress tensor | ||
| Porosity | Electrical conductivity | ||
| Total strain tensor | Tortuosity | ||
| Elastic strain | Solid volume fraction | ||
| Thermal strain | Frication coefficient | ||
| Over potential | |||
| Subscripts and superscripts | |||
| Anode | Species indices | ||
| cathode | Mass generation | ||
| Activation | Open circuit | ||
| Anode activation over potential | Ohimic over potential | ||
| Cathode activation over potential | Solid phase | ||
| Effective value | Layer or region indices | ||
| Electrolyte | Standard state | ||
| Gas system | Transpose | ||
References
- Francesco, S.; Alessandro, M.; Carlo, C.; Alessandro, B. Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking. Appl. Energy 2023, 342, 121198. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Boldrini, A.; Koolen, D.; Crijns-Graus, W.; van den Broek, M. The impact of decarbonising the iron and steel industry on European power and hydrogen systems. Appl. Energy 2024, 361, 122902. [Google Scholar] [CrossRef]
- Makki Abadi, M.; Rashidi, M.M. Machine Learning for the Optimization and Performance Prediction of Solid Oxide Electrolysis Cells: A Review. Processes 2025, 13, 875. [Google Scholar] [CrossRef]
- Aubras, F.; Deseure, J.; Kadjo, J.J.A. Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation. Int. J. Hydrogen Energy 2017, 42, 26203–26216. [Google Scholar] [CrossRef]
- Shangguan, Z.; Li, H.; Yang, B.; Zhao, Z.; Wang, T.; Jin, L.; Zhang, C. Optimization of alkaline electrolyzer operation in renewable energy power systems: A universal modeling approach for enhanced hydrogen production efficiency and cost-effectiveness. Int. J. Hydrogen Energy 2024, 49, 943–954. [Google Scholar] [CrossRef]
- Vo, N.D.; Oh, D.H.; Hong, S.-H.; Oh, M.; Lee, C.-H. Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer. Appl. Energy 2019, 255, 113809. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Darko, C.K.; Obiako, P.C.; Kuang, B.; Sun, X.; Jenkins, K. A comparative analysis of different hydrogen production methods and their environmental impact. Clean Technol. 2023, 5, 1344–1380. [Google Scholar] [CrossRef]
- Wendel, C.H.; Braun, R.J. Design and techno-economic analysis of high-efficiency reversible solid oxide cell systems for distributed energy storage. Appl. Energy 2016, 172, 118–131. [Google Scholar] [CrossRef]
- Jin, X.; Xue, X. Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions. J. Power Sources 2010, 195, 6652–6658. [Google Scholar] [CrossRef]
- Zhang, B.; Harun, N.F.; Zhou, N.; Oryshchyn, D.; Colon-Rodriguez, J.J.; Shadle, L.; Bayham, S.; Tucker, D. A real-time distributed solid oxide electrolysis cell (SOEC) model for cyber-physical simulation. Appl. Energy 2025, 388, 125607. [Google Scholar] [CrossRef]
- Salihi, H.; Ju, H. Integrated modeling of electrochemical, thermal, and structural behavior in solid oxide electrolysis cells. Appl. Energy 2024, 353, 122041. [Google Scholar] [CrossRef]
- Xu, Y.; Chi, B.; Tu, Z. Performance evaluation and uniformity analysis of multi-stack solid oxide electrolysis cell (SOEC) systems under different arrangements. Int. J. Hydrogen Energy 2025, 173, 151339. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Ni, M.; Zhan, R.; Du, Q.; Jiao, K. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Appl. Therm. Eng. 2020, 172, 114959. [Google Scholar] [CrossRef]
- Der, O.; Olaitan, K.; Bertola, V. An experimental investigation of oil–water flow in a serpentine channel. Int. J. Multiph. Flow 2020, 129, 103327. [Google Scholar] [CrossRef]
- Kovalev, A.V.; Yagodnitsyna, A.A.; Bilsky, A.V. Plug flow of immiscible liquids with low viscosity ratio in serpentine microchannels. Chem. Eng. J. 2021, 417, 127933. [Google Scholar] [CrossRef]
- Virkar, A.V. Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int. J. Hydrogen Energy 2010, 35, 9527–9543. [Google Scholar] [CrossRef]
- Udagawa, J.; Aguiar, P.; Brandon, N.P. Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell. J. Power Sources 2007, 166, 127–136. [Google Scholar] [CrossRef]
- Zeng, S.; Xu, M.; Parbey, J.; Yu, G.; Andersson, M.; Li, Q.; Li, B.; Li, T. Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity. Int. J. Hydrogen Energy 2017, 42, 20239–20248. [Google Scholar] [CrossRef]
- Yang, P.; Feng, K.; Li, Z.-P. A review of advanced SOFCs and SOECs: Materials, innovative synthesis, functional mechanisms, and system integration. eScience 2025. advance online publication. [Google Scholar] [CrossRef]
- Jolaoso, L.A.; Bello, I.T.; Kazempoor, P. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production—A comprehensive review. Int. J. Hydrogen Energy 2023, 48, 31990–32013. [Google Scholar] [CrossRef]
- Sala, E.M.; Mazzanti, N.; Mogensen, M.B.; Chatzichristodoulou, C. Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects—A review. Solid State Ion. 2022, 375, 115833. [Google Scholar] [CrossRef]
- Ghamarinia, M.; Babaei, A.; Zamani, C.; Aslannejad, H. Application of the distribution of relaxation time method in electrochemical analysis of the air electrodes in the SOFC/SOEC devices: A review. Chem. Eng. J. Adv. 2023, 15, 100503. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Zhong, W. Techno-Economic analysis of coal and poultry manure combustion in a pressurized Oxy-Fuel CFB system coupled with SOEC. Appl. Therm. Eng. 2025, 279, 128107. [Google Scholar] [CrossRef]
- Lang, M.; Lee, Y.S.; Lee, I.S.; Szabo, P.; Hong, J.; Cho, J.; Costa, R. Analysis of electrochemical degradation phenomena of a 60-cell SOC stack operated in reversible SOFC/SOEC cycling mode. Appl. Energy 2025, 386, 125565. [Google Scholar] [CrossRef]
- Lahrichi, A.; El Issmaeli, Y.; Polle, B.G.; Ghrib, T. Advancements, strategies, and prospects of solid oxide electrolysis cells (SOECs): Towards enhanced performance and large-scale sustainable hydrogen production. J. Energy Chem. 2024, 94, 50–70. [Google Scholar] [CrossRef]
- Gholizadeh, T.; Abbaspour, N.; Ghiasirad, H.; Skorek-Osikowska, A. Sustainable biofuel production through anaerobic digestion, SOEC and carbon-capture-and-utilization (CCU): Techno-economic, exergy and Life-cycle analysis. Energy 2025, 317, 120894. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Z.; Xiao, L.; Zhou, R.; Liu, Q.; Ou, D.R.; Yuan, J. Multiphysics Analysis and Optimization of Solid Oxide Electrolysis Cells with Functionally Graded Fuel Electrodes. Thin-Walled Struct. 2025, 113936. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.; Zhu, P.; Xuan, J.; Ni, M.; Xu, H. Multi-objective optimization of SOEC performance in dynamic operation: A hybrid modelling approach towards thermal neutrality. Energy Convers. Manag. 2025, 337, 119926. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S.; Ni, M.; Wang, J.; Li, M. A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions. Appl. Energy 2024, 371, 123669. [Google Scholar] [CrossRef]
- Noren, D.A.; Hoffman, M.A. Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 2005, 152, 175–181. [Google Scholar] [CrossRef]
- Liu, C.; Dang, Z.; Xi, G. Numerical study on thermal stress of solid oxide electrolyzer cell with various flow configurations. Appl. Energy 2024, 353, 122041. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, H.; Liu, X.; Xiao, Y.; Kong, J.; Zhou, T. LSCM-GDC as composite cathodes for high temperature steam electrolysis: Performance optimization by composition and microstructure tailoring. Int. J. Hydrogen Energy 2022, 47, 34784–34793. [Google Scholar] [CrossRef]
- Momma, A.; Kato, T.; Kaga, Y.; Nagata, S. Polarization behavior of high temperature solid oxide electrolysis cells (SOEC). J. Ceram. Soc. Jpn. 1997, 105, 369–373. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, S.; Chi, B.; Tu, Z. Numerical study on improved mass and heat transfer performance in a solid oxide electrolysis cell with sine wave flow field. Int. J. Hydrogen Energy 2025, 137, 806–818. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, L.; Liu, Y.; Zhang, X.; Zhou, R.; Liu, F.; Yuan, J. Performance and thermal stress evaluation of full-scale SOEC stack using multi-physics modeling method. Energies 2023, 16, 7720. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Li, G.; Xiao, G.; Wang, J.Q. Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell. Int. J. Hydrogen Energy 2017, 42, 10785–10801. [Google Scholar] [CrossRef]
- Tu, Y.; Chai, J.; Li, S.; Han, F.; Zhang, Z.; Cai, W. The study of multiphysics field coupling and thermal stress in three types of Solid Oxide Electrolysis Cells (SOEC). Int. J. Electrochem. Sci. 2024, 19, 100789. [Google Scholar] [CrossRef]
- Ryu, D.; Lim, J.; Lee, W.; Hong, J. Contactless external manifold design of a kW-scale solid oxide electrolysis cell stack and analysis of its impact on the internal stack environment. Energy Convers. Manag. X 2025, 26, 100934. [Google Scholar] [CrossRef]
















| Property | Cathode Gas Diffusion Layer (CGDL) | Cathode Gas Diffusion Electrode (CGDE) | Anode Gas Diffusion Layer (AGDL) | Anode Gas Diffusion Electrode (AGDE) | Electrolyte Membrane | 
|---|---|---|---|---|---|
| Material | Sr-droped LamnO3 (LSM) | Sr-droped LamnO3 (LSM) | Ni-stabilized ZrO2 (YSZ) | Ni-stabilized ZrO2 (YSZ) | Y2O3-stabilized ZrO2 (8YSZ) | 
| Area (mm × mm) | 64 × 60 | 64 × 60 | 64 × 60 | 64 × 60 | 64 × 60 | 
| Thickness (mm) | 0.5 | 0.015 | 0.025 | 0.015 | 0.015 | 
| Porosity (%) | 0.4 | 0.4 | 0.4 | 0.4 | - | 
| Permeability (m2) | 10–11 | 10–10 | 10–11 | 10–10 | - | 
| Density (kg/m3) | 6100 | 6100 | 5800 | 5800 | 6050 | 
| Exchange Current Density (A/m2) | - | 5300 | - | 2000 | - | 
| Electronic Conductivity (S/m) | - | 1000 | - | 1000 | 
| Component | Mass Flow (kg/s) | Outlet Pressure [Pa] | Inlet Temperature [°C] | Inlet Gas Compositions | 
|---|---|---|---|---|
| Cathode cannel | 0 | 600 | H2: 40%, H2O:60% | |
| Anode channel | 0 | 600 | O2: 21% N2: 79% | |
| Additional channel | 0 | 900 | H2O (g) | 
| Component | Thermal Conductivity (W/m.K) | Young’s Modulus (GPa) | Poisson’s Ratio | ) (10−6/K) | 
|---|---|---|---|---|
| CGDL/CGDE cathode | 4 | 220 | 0.3 | 12.5 | 
| AGDL/ADGE anode | 4 | 160 | 0.3 | 11.4 | 
| Electrolyte | 2 | 205 | 0.3 | 10.3 | 
| Interconnector | 30 | 205 | 0.3 | 12.3 | 
| Parameter | Value | Unit | 
|---|---|---|
| Inlet temperature, Tin | 600 | °C | 
| Reference temperature, Tref | 800 | °C | 
| Normal mass flow rate (cathode) | 6.71 × 10−7 | kg·s−1 | 
| Normal mass flow rate (anode) | 1.34 × 10−6 | kg·s−1 | 
| Reference exchange current density | 100 | A·m−2 | 
| Anodic transfer coefficient | 0.5 | – | 
| Effective electrical conductivity | 1000 | S·m−1 | 
| Volume fraction | 0.3 | – | 
| Reference exchange current density | 1.0 × 10−4 | A·m−2 | 
| Effective electrical conductivity | 1000 | S·m−1 | 
| Volume fraction | 0.3 | – | 
| Channel | Dh (mm) | U (m/s) | Re = ρUD/μ | |
|---|---|---|---|---|
| 1 | 1.8 | 9.0 | 61.34 | 57.35 | 
| 2 | 1.6 | 8.5 | 51.50 | 58.99 | 
| 3 | 1.4 | 8.0 | 42.41 | 60.73 | 
| 4 | 1.2 | 7.4 | 33.63 | 62.57 | 
| 5 | 1.0 | 6.8 | 25.75 | 64.52 | 
| 6 | 0.8 | 6.0 | 18.18 | 66.60 | 
| 7 | 0.6 | 6.2 | 14.09 | 68.82 | 
| 8 | 0.4 | 4.3 | 6.51 | 71.20 | 
| 9 | 0.3 | 3.4 | 3.86 | 73.74 | 
| 10 | 0.2 | 2.5 | 1.89 | 76.47 | 
| Study (Year) | Design Lever | Operating Point(s) | Hydrogen Production Outcome | 
|---|---|---|---|
| Xu et al., 2025 [35] | Enhanced mass/heat-transfer flow field (channel features to intensify transport) | ~1.4 V cases | +13.07% to +40.24% increase in hydrogen production rate vs. baseline | 
| Wang et al., 2023 [36] | Flow configuration at stack scale (co-/counter-/cross-flow) | Multi-V, 10-cell stack | Cross-flow ~+8% higher H2 production than co-/counter-flow; outlet x_H2 ≈ 96.6% vs. 88–89% | 
| Liu et al., 2024 [32] | Flow configuration (co- vs. counter- vs. cross-flow) | Model comparisons | Reports ~+15% hydrogen production for cross-flow vs. co/counter under their conditions | 
| Xu et al., 2017 [37] | Co-/counter-/cross-flow comparison | Model sweep | Shows configuration-dependent performance and thermal fields) | 
| Tu et al., 2024 [38] | Channel cross-section shape (square/rectangular/triangular/trapezoidal) | Fixed V ranges per study | Trapezoidal channels yield the highest H2 production rate among the tested shapes | 
| Ryu et al., 2025 [39] | External manifold redesign (contactless manifold for distribution) | kW-scale stack study | Production improvement inferred via a more uniform distribution | 
| Present study | Novelty in variable channel width of SOEC | 1.1–1.5 V | +6.8–29% H2 production gain vs. uniform channels; at 1.3 V, x_H2,out: S1 = 0.54 → S2 = 0.70 (+29%) | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makki Abadi, M.; Thumu, U.; Rashidi, M.M.; Mohammadi Dashtaki, P. Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production. Processes 2025, 13, 3472. https://doi.org/10.3390/pr13113472
Makki Abadi M, Thumu U, Rashidi MM, Mohammadi Dashtaki P. Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production. Processes. 2025; 13(11):3472. https://doi.org/10.3390/pr13113472
Chicago/Turabian StyleMakki Abadi, Mahmoud, Udayabhaskararao Thumu, Mohammad Mehdi Rashidi, and Payam Mohammadi Dashtaki. 2025. "Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production" Processes 13, no. 11: 3472. https://doi.org/10.3390/pr13113472
APA StyleMakki Abadi, M., Thumu, U., Rashidi, M. M., & Mohammadi Dashtaki, P. (2025). Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production. Processes, 13(11), 3472. https://doi.org/10.3390/pr13113472
 
        
 
                                                


 
       