Multimodal Biomarker Analysis of LRRK2-Linked Parkinson’s Disease Across SAA Subtypes
Abstract
1. Introduction
2. Materials and Methods
2.1. PPMI Data Preparation for LRRK2+ SAA− and SAA+ Analysis
2.2. Methods
2.2.1. Overview of the Methods
2.2.2. ANOVA Analysis
2.2.3. Linear Mixed-Effects Models
2.2.4. Dominance Analysis
3. Results
3.1. ANOVA Analysis of Category Variables
3.2. Identification of Important non-Categorical Variables on PD
4. Discussion
4.1. Major Findings from ANOVA Analysis and Linear Mixed Effects Models
4.2. Comparison of LRRK2+ SAA− and LRRK2+ SAA+
4.3. DaTScan Versus NP3TOT in SAA− Patients
4.4. Clinical Implication and Significance
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Abbreviation | Meanings | Values |
|---|---|---|
| EVENT_ID | Visit identifier | V04, V06, V10 |
| SAA_Status | Alpha-synuclein seed amplification assay (SAA) result | SAA+ or SAA− |
| SEX | Sex | 0 = Male, 1 = Female |
| RAASIAN | Race: Asian | 0 = No, 1 = Yes |
| RABLACK | Race: Black or African American | 0 = No, 1 = Yes |
| RAWHITE | Race: White | 0 = No, 1 = Yes |
| HISPLAT | Ethnicity: Hispanic/Latino | 0 = No, 1 = Yes |
| HANDED | Handedness | 1 = Right, 2 = Left, 3 = Ambidextrous |
| AGE_AT_VISIT | Age at the time of visit | 40<, 40–50, 50–60, 60–70, >70 |
| DaTScan | DaTScan binding ratio | 4.54 ± 1.52 |
| NP3TOT | MDS-UPDRS Part III (Motor Examination) total score | 20.40 ± 10.32 |
| SLPINJUR | Sleep-related injury | 0.094 ± 0.29 |
| DRMFIGHT | Acting out dreams (fighting) | 0.22 ± 0.42 |
| DRMUMV | Dream enactment (movement) | 0.11 ± 0.31 |
| SLPLMBMV | Limb movement during sleep | 0.20 ± 0.41 |
| DEPRS | Geriatric Depression Scale (GDS) score | 0.24 ± 0.43 |
| NP1CNST | MDS-UPDRS Part Ia: Constipation | 0.62 ± 0.84 |
| NP1FATG | MDS-UPDRS Part Ia: Fatigue | 1.06 ± 0.95 |
| NP1URIN | MDS-UPDRS Part Ia: Urinary problems | 0.74 ± 0.94 |
| NP1SLPD | MDS-UPDRS Part Ia: Sleep problems | 1.05 ± 0.95 |
| NP1PTOT | MDS-UPDRS Part Ia: total score | 6.65 ± 4.22 |
| NP1COG | MDS-UPDRS Part Ib: Cognitive impairment | 0.46 ± 0.59 |
| NP1APAT | MDS-UPDRS Part Ib: Apathy | 0.43 ± 0.69 |
| NP1DPRS | MDS-UPDRS Part Ib: Depressed mood | 0.46 ± 0.71 |
| NP1ANXS | MDS-UPDRS Part Ib: Anxious mood | 0.52 ± 0.77 |
| NP1DDS | MDS-UPDRS Part Ib: Daytime sleepiness | 0.11 ± 0.34 |
| NP1RTOT | MDS-UPDRS Part Ib (Reported symptoms) total score | 2.08 ± 2.03 |
| NP2WALK | MDS-UPDRS Part II: Walking and balance | 0.94 ± 0.87 |
| NP2FREZ | MDS-UPDRS Part II: Freezing | 0.33 ± 0.72 |
| NP2TRMR | MDS-UPDRS Part II: Tremor | 0.98 ± 0.86 |
| NP2TURN | MDS-UPDRS Part II: Turning in bed | 0.70 ± 0.68 |
| NP2RISE | MDS-UPDRS Part II: Getting up from chair | 0.88 ± 0.79 |
| NP2SPCH | MDS-UPDRS Part II: Speech difficulties | 0.55 ± 0.83 |
| NP2DRES | MDS-UPDRS Part II: Dressing | 0.65 ± 0.71 |
| NP2PTOT | MDS-UPDRS Part II total score | 8.43 ± 6.06 |
| MCAALTTM | MoCA: Alternating trail making | 0.91 ± 0.29 |
| MCACUBE | MoCA: Cube copy | 0.73 ± 0.44 |
| MCACLCKC | MoCA: Clock contour | 0.99 ± 0.09 |
| MCACLCKN | MoCA: Clock numbers | 0.89 ± 0.31 |
| MCACLCKH | MoCA: Clock hands | 0.84 ± 0.37 |
| MCAVFNUM | MoCA: Verbal fluency—number of words | 15.24 ± 5.56 |
| MCAVF | MoCA: Verbal fluency | 0.88 ± 0.32 |
| MCASER7 | MoCA: Serial 7s (attention test) | 2.76 ± 0.60 |
| MCARHINO | MoCA: Naming (rhinoceros) | 0.96 ± 0.20 |
| Urinary | SCOPA-AUT: Urinary domain | 4.18 ± 5.18 |
| Cardio | SCOPA-AUT: Cardiovascular domain | 1.43 ± 0.93 |
| Thermoreg | SCOPA-AUT: Thermoregulation domain | 2.53 ± 2.72 |
| Pupillomotor | SCOPA-AUT: Pupillomotor domain | 0.97 ± 0.68 |
| Sexual functions | SCOPA-AUT: Sexual function domain | 7.13 ± 6.02 |
| LSIRES | Blood test: LSI result | 28.17 ± 43.78 |
| LUSRES | Blood test: LUS result | 20.72 ± 18.38 |
References
- Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Singapore, 2018. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Uitti, R.J. Rasagiline, Parkinson neuroprotection, and delayed-start trials: Still no satisfaction? Neurology 2010, 74, 1143–1148. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Azulay, J.-P.; Odin, P.; Lindvall, S.; Domingos, J.; Alobaidi, A.; Kandukuri, P.L.; Chaudhari, V.S.; Parra, J.C.; Yamazaki, T.; et al. Economic Burden of Parkinson’s Disease: A Multinational, Real-World, Cost-of-Illness Study. Drugs-Real World Outcomes 2024, 11, 1–11. [Google Scholar] [CrossRef]
- Ramesh, S.; Arachchige, A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023, 10, 200–231. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Dorsey, E.R.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. Npj Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Deal, L.S.; Flood, E.; Myers, D.E.; Devine, J.; Gray, D.L. The Parkinson’s Disease Activities of Daily Living, Interference, and Dependence Instrument. Mov. Disord. Clin. Pract. 2019, 6, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Mack, J.; Marsh, L. Parkinson’s Disease: Cognitive Impairment. Focus (Madison) 2017, 15, 42–54. [Google Scholar] [CrossRef]
- Marafioti, G.; Corallo, F.; Cardile, D.; Di Lorenzo, G.; Quartarone, A.; Buono, V.L. REM Sleep Behavior Disorder and Cognitive Functions in Parkinson’s Patients: A Systematic Review. J. Clin. Med. 2023, 12, 7397. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Keller, M.F.; Hernandez, D.G.; Chen, L.; Stone, D.J.; Singleton, A.B.; Parkinson’s Progression Marker Initiative (PPMI) investigators. Baseline genetic associations in the Parkinson’s Progression Markers Initiative (PPMI). Mov. Disord. 2016, 31, 79–85. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Surasi, D.S.; Peller, P.J.; Szabo, Z.; Mercier, G.; Subramaniam, R.M. Dopamine transporter SPECT imaging in parkinson disease and dementia. PET Clin. 2013, 8, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Simuni, T.; Uribe, L.; Cho, H.R.; Caspell-Garcia, C.; Coffey, C.S.; Siderowf, A.; Trojanowski, J.Q.; Shaw, L.M.; Seibyl, J.; Singleton, A.; et al. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): A cross-sectional study. Lancet Neurol. 2020, 19, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Simuni, T.; Brumm, M.C.; Uribe, L.; Caspell-Garcia, C.; Coffey, C.S.; Siderowf, A.; Alcalay, R.N.; Trojanowski, J.Q.; Shaw, L.M.; Seibyl, J.; et al. Clinical and Dopamine Transporter Imaging Characteristics of Leucine Rich Repeat Kinase 2 (LRRK2) and Glucosylceramidase Beta (GBA) Parkinson’s Disease Participants in the Parkinson’s Progression Markers Initiative: A Cross-Sectional Study. Mov. Disord. 2020, 35, 833–844. [Google Scholar] [CrossRef]
- Sun, X.; Dou, K.; Xue, L.; Xie, Y.; Yang, Y.; Xie, A. Comprehensive analysis of clinical and biological features in Parkinson’s disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Clin. Transl. Sci. 2024, 17, e13720. [Google Scholar] [CrossRef]
- Simuni, T.; Merchant, K.; Brumm, M.C.; Cho, H.; Caspell-Garcia, C.; Coffey, C.S.; Chahine, L.M.; Alcalay, R.N.; Nudelman, K.; Foroud, T.; et al. Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort. Npj Park. Dis. 2022, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, R.; Macklin, E.A.; Logan, R.; Zorlu, M.M.; Xia, N.; Crotty, G.F.; Zhang, E.; Chen, X.; Ascherio, A.; Schwarzschild, M.A. Higher urate in LRRK2 mutation carriers resistant to Parkinson disease. Ann. Neurol. 2019, 85, 593–599. [Google Scholar] [CrossRef]
- Bougea, A.; Koros, C.; Papagiannakis, N.; Simitsi, A.-M.; Prentakis, A.; Papadimitriou, D.; Pachi, I.; Antonelou, R.; Angelopoulou, E.; Beratis, I.; et al. Serum Uric Acid in LRRK2 Related Parkinson’s Disease: Longitudinal Data from the PPMI Study. J. Park. Dis. 2021, 11, 633–640. [Google Scholar] [CrossRef]
- Chang, B.; Jiang, Y.; Feng, C.; Li, B.; Mei, J.; Niu, C. Effect of purine diet on prognosis of deep brain stimulation for Parkinson’s disease. Food Sci. Hum. Wellness 2025, 14, 9250066. [Google Scholar] [CrossRef]
- Merchant, K.M.; Simuni, T.; Fedler, J.; Caspell-Garcia, C.; Brumm, M.; Nudelman, K.N.H.; Tengstrandt, E.; Hsieh, F.; Alcalay, R.N.; Coffey, C.; et al. LRRK2 and GBA1 variant carriers have higher urinary bis(monacylglycerol) phosphate concentrations in PPMI cohorts. Npj Park. Dis. 2023, 9, 30. [Google Scholar] [CrossRef]
- Huh, Y.E.; Park, H.; Chiang, M.S.R.; Tuncali, I.; Liu, G.; Locascio, J.J.; Shirvan, J.; Hutten, S.J.; Rotunno, M.S.; Viel, C.; et al. Glucosylceramide in cerebrospinal fluid of patients with GBA-associated and idiopathic Parkinson’s disease enrolled in PPMI. Npj Park. Dis. 2021, 7, 102. [Google Scholar] [CrossRef]
- Kmiecik, M.J.; Micheletti, S.; Coker, D.; Heilbron, K.; Shi, J.; Stagaman, K.; Sonmez, T.F.; Fontanillas, P.; Shringarpure, S.; Wetzel, M.; et al. Genetic analysis and natural history of Parkinson’s disease due to the LRRK2 G2019S variant. Brain 2024, 147, 1996–2008. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.H.; Lee, J.Y.; Han, S.-K.; Song, Y.S. Motor subtypes and clinical characteristics in sporadic and genetic Parkinson’s disease groups: Analysis of the PPMI cohort. Front. Neurol. 2023, 14, 1276251. [Google Scholar] [CrossRef] [PubMed]
- Thaler, A.; Livne, V.; Rubinstein, E.; Omer, N.; Faust-Socher, A.; Cohen, B.; Giladi, N.; Shirvan, J.C.; Cedarbaum, J.M.; Gana-Weisz, M.; et al. Mild cognitive impairment among LRRK2 and GBA1 patients with Parkinson’s disease. Park. Relat. Disord. 2024, 123, 106970. [Google Scholar] [CrossRef]
- Yu, C.H.; Rodriguez-Porcel, F.; Wilson, S.; Lench, D.H.; Cooper, C.A. Genetic influence on microstructure integrity and motor progression in Parkinson’s disease. Park. Relat. Disord. 2024, 127, 107082. [Google Scholar] [CrossRef]
- Lee, M.J.; Pak, K.; Kim, H.-K.; Nudelman, K.N.; Kim, J.H.; Kim, Y.H.; Kang, J.; Baek, M.S.; Lyoo, C.H. Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. Npj Park. Dis. 2021, 7, 104. [Google Scholar] [CrossRef]
- Jin, R.; Yoshioka, H.; Sato, H.; Hisaka, A. Data-driven disease progression model of Parkinson’s disease and effect of sex and genetic variants. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 649–659. [Google Scholar] [CrossRef]
- Teipel, S.J.; Hoffmann, H.; Storch, A.; Hermann, A.; Dyrba, M.; Schumacher, J. Brain age in genetic and idiopathic Parkinson’s disease. Brain Commun. 2024, 6, fcae382. [Google Scholar] [CrossRef]
- Schumacher, J.G.; Zhang, X.; Macklin, E.A.; Wang, J.; Bayati, A.; Dijkstra, J.M.; Watanabe, H.; Schwarzschild, M.A.; Cortese, M.; Zhang, X.; et al. Baseline α-synuclein seeding activity and disease progression in sporadic and genetic Parkinson’s disease in the PPMI cohort. EBioMedicine 2024, 119, 105866. [Google Scholar] [CrossRef]
- Chahine, L.M.; Lafontant, D.E.; Choi, S.H.; Iwaki, H.; Blauwendraat, C.; Singleton, A.B.; Brumm, M.C.; Alcalay, R.N.; Merchant, K.; Nudelman, K.N.H.; et al. LRRK2-associated parkinsonism with and without in vivo evidence of alpha-synuclein aggregates: Longi-tudinal clinical and biomarker characterization. Brain Commun. 2025, 7, fcaf103. [Google Scholar] [CrossRef]
- Pachi, I.; Koros, C.; Simitsi, A.M.; Papadimitriou, D.; Bougea, A.; Prentakis, A.; Papagiannakis, N.; Bozi, M.; Antonelou, R.; Angelopoulou, E.; et al. Apathy: An underestimated feature in GBA and LRRK2 non-manifesting mutation carriers. Park. Relat. Disord. 2021, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mihaescu, A.S.; Valli, M.; Uribe, C.; Diez-Cirarda, M.; Masellis, M.; Graff-Guerrero, A.; Strafella, A.P. Beta amyloid deposition and cognitive decline in Parkinson’s disease: A study of the PPMI cohort. Mol. Brain 2022, 15, 79. [Google Scholar] [CrossRef]
- Srivatsal, S.; Cholerton, B.; Leverenz, J.B.; Wszolek, Z.K.; Uitti, R.J.; Dickson, D.W.; Weintraub, D.; Trojanowski, J.Q.; Van Deerlin, V.M.; Quinn, J.F.; et al. Cognitive profile of LRRK2-related Parkinson’s disease. Mov. Disord. 2015, 30, 728–733. [Google Scholar] [CrossRef]
- Saunders-Pullman, R.; Mirelman, A.; Alcalay, R.N.; Wang, C.; Ortega, R.A.; Raymond, D.; Mejia-Santana, H.; Orbe-Reilly, M.; Johannes, B.A.; Thaler, A.; et al. Progression in the LRRK2-Asssociated Parkinson disease population. JAMA Neurol. 2018, 75, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Melrose, H. Update on the functional biology of Lrrk2. Futur. Neurol. 2008, 3, 669–681. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E.; Hazrati, L.-N.; Fujioka, S.; Wszolek, Z.K.; Dickson, D.W.; Ross, O.A.; Van Deerlin, V.M.; Trojanowski, J.Q.; Hurtig, H.I.; et al. Clinical correlations with lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 2015, 72, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.R.; Lee, B.D. Pathological functions of lrrk2 in parkinson’s disease. Cells 2020, 9, 2565. [Google Scholar] [CrossRef]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.-E.; Farris, C.M.; Ma, Y.; AUrenia, P.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T.; et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: A cross-sectional study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- Bega, D.; Kuo, P.H.; Chalkidou, A.; Grzeda, M.T.; Macmillan, T.; Brand, C.; Sheikh, Z.H.; Antonini, A. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: A systematic review and meta-analysis. Npj Park. Dis. 2021, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, C.; Ma, J.; Yang, R.; Qi, Q.; Gao, Z.; Du, T.; Zhang, P.; Li, Y.; Cai, M.; et al. Motor progression trajectories and risk of mild cognitive impairment in Parkinson’s disease: A latent class tra-jectory model from PPMI cohort. CNS Neurosci. Ther. 2024, 30, e14918. [Google Scholar] [CrossRef]
- Ahamadi, M.; Mehrotra, N.; Hanan, N.; Lai Yee, K.; Gheyas, F.; Anton, J.; Bani, M.; Boroojerdi, B.; Smit, H.; Weidemann, J.; et al. A Disease Progression Model to Quantify the Nonmotor Symptoms of Parkinson’s Disease in Participants With Leucine-Rich Repeat Kinase 2 Mutation. Clin. Pharmacol. Ther. 2021, 110, 508–518. [Google Scholar] [CrossRef]
- Gallagher, J.; Gochanour, C.; Caspell-Garcia, C.; Dobkin, R.D.; Aarsland, D.; Alcalay, R.N.; Barrett, M.J.; Chahine, L.; Chen-Plotkin, A.S.; Coffey, C.S.; et al. Long-Term Dementia Risk in Parkinson Disease. Neurology 2024, 103, e209699. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 1993, 114, 542. [Google Scholar] [CrossRef]
- Azen, R.; Budescu, D.V. The Dominance Analysis Approach for Comparing Predictors in Multiple Regression. Psychol. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef]
- Laird, N.M.; Ware, J.H. Random-Effects Models for Longitudinal Data. Biometrics 1982, 38, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Schrettl, M.; Bignell, E.; Kragl, C.; Joechl, C.; Rogers, T.; Arst, H.N., Jr.; Haynes, K.; Haas, H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 2004, 200, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, J.T.; Perepezko, K.; Mills, K.A.; Mari, Z.; Butala, A.; Dawson, T.M.; Pantelyat, A.; Rosenthal, L.S.; Pontone, G.M. Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Park. Relat. Disord. 2018, 55, 8–14. [Google Scholar] [CrossRef]
- Seibyl, J.P.; Kuo, P. What Is the Role of Dopamine Transporter Imaging in Parkinson Prevention Clinical Trials? Neurology 2022, 99, 61–67. [Google Scholar] [CrossRef]
- Brooks, D.J. Imaging approaches to Parkinson disease. J. Nucl. Med. 2010, 51, 596–609. [Google Scholar] [CrossRef]
- Barber, T.R.; Klein, J.C.; Mackay, C.E.; Hu, M.T. Neuroimaging in pre-motor Parkinson’s disease. NeuroImage Clin. 2017, 15, 215–227. [Google Scholar] [CrossRef]
- Visser, M.; Marinus, J.; Stiggelbout, A.M.; van Hilten, J.J. Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. 2004, 19, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Regnault, A.; Boroojerdi, B.; Meunier, J.; Bani, M.; Morel, T.; Cano, S. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort. J. Neurol. 2019, 266, 1927–1936. [Google Scholar] [CrossRef]
- Sidransky, E.; Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012, 11, 986–998. [Google Scholar] [CrossRef]
- Zhang, H.; He, K.; Zhao, Y.; Peng, Y.; Feng, D.; Wang, J.; Gao, Q. fNIRS Biomarkers for Stratifying Poststroke Cognitive Impairment: Evidence From Frontal and Temporal Cortex Activation. Stroke 2025. [Google Scholar] [CrossRef]
- Wan, L.; Pei, P.; Zhang, Q.; Gao, W. Specificity in the commonalities of inhibition control: Using meta-analysis and regression analysis to identify the key brain regions in psychiatric disorders. Eur. Psychiatry 2024, 67, e69. [Google Scholar] [CrossRef]
- Ou, J.; Li, N.; He, H.; He, J.; Zhang, L.; Jiang, N. Detecting muscle fatigue among community-dwelling senior adults with shape features of the probability density function of sEMG. J. Neuroeng. Rehabil. 2024, 21, 196. [Google Scholar] [CrossRef]
- Li, N.; Ou, J.; He, H.; He, J.; Zhang, L.; Peng, Z.; Zhong, J.; Jiang, N. Exploration of a machine learning approach for diagnosing sarcopenia among Chinese community-dwelling older adults using sEMG-based data. J. Neuroeng. Rehabil. 2024, 21, 69. [Google Scholar] [CrossRef]
- Hu, B.; Wang, X.; Lu, S.; Ying, X. A study of bidirectional control of Parkinson’s beta oscillations by basal ganglia. Chaos Solitons Fractals 2025, 195, 116267. [Google Scholar] [CrossRef]
- Zhu, C. Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users. J. Cloud Comput. 2024, 13, 119. [Google Scholar] [CrossRef]
- Mollenhauer, B.; Caspell-Garcia, C.J.; Coffey, C.S.; Taylor, P.; Singleton, A.; Shaw, L.M.; Trojanowski, J.Q.; Frasier, M.; Simuni, T.; Iranzo, A.; et al. Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal and early Parkinson’s disease. Mov. Disord. 2019, 34, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019, 18, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Surova, Y.; Öhrfelt, A.; Zetterberg, H.; Lindqvist, D.; Hansson, O. CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015, 84, 57–63. [Google Scholar] [CrossRef] [PubMed]




| Dataset | Description |
|---|---|
| MDS-UPDRS Parts I, II, III | Unified Parkinson’s Disease Rating Scale by Movement Disorder Society: - Part I: Non-motor symptoms (e.g., cognitive decline, sleep issues, depression) - Part II: Motor aspects of daily living (ADLs) like dressing, eating, hygiene - Part III: Clinician-administered motor exam (e.g., tremor, rigidity, bradykinesia) |
| REM Sleep Behavior Disorder Questionnaire | Captures frequency and severity of dream-enacting behaviors Highly predictive of prodromal Parkinson’s and related disorders |
| MoCA (Montreal Cognitive Assessment) | Cognitive screening tool for early detection of mild cognitive impairment Assesses memory, attention, executive function, language, and visuospatial skills |
| SCOPA-AUT | Scales for Outcomes in Parkinson’s - Autonomic subscale Evaluates dysfunction in GI, urinary, cardiovascular, thermoregulatory, and sexual systems |
| Blood Chemistry & Hematology | Includes biomarkers of systemic function: liver enzymes, kidney function, blood counts, inflammation |
| Age at Visit | Demographic variable important for age-adjusted risk/progression models Also used for longitudinal time alignment |
| DaTScan SBR Analysis | Striatal Binding Ratio (SBR) quantifies dopamine transporter availability via SPECT imaging Objective biomarker for nigrostriatal degeneration |
| Groups with Significant Difference in PD Status | DaTScan as the Early PD Indicator | NP3TOT as the Formal PD Indicator |
|---|---|---|
| SAA+ PD vs. SAA− PD Patients | SAA+ PD vs. SAA− PD Patients | |
| Sex (Male, Female) | (Female: SAA+) < (Male: SAA−) | (Male: SAA+) < (Female: SAA−) |
| Race (White, Black, Asian) | No significant difference in DaTScan between race groups | (White) < (Asian) |
| Age (<40, 40–49, 50–59, 60–69, 70+) | (60–69: SAA+) < (70+: SAA−) | No significant difference in NP3TOT between age groups |
| Hispanic (Hispanic, Non-Hispanic) | (Non-Hispanic: SAA+) < (Hispanic: SAA−) | No significant difference in NP3TOT between ethical groups |
| Handed (Right-handed, Left-handed) | No significant difference in DaTScan between handed groups | No significant difference in NP3TOT between handed groups |
| Variables | DaTScan for SAA+ | DaTScan for SAA− | NP3TOP for SAA+ | NP3TOP for SAA− | |
|---|---|---|---|---|---|
| Time | 0.0024 * | 0.072 | 0.35 | 0.043 * | |
| MDS-UPDRS_Part_I Variables (from patients) | NP1CNST | 0.27 | 0.99 | 0.33 | 0.030 * |
| NP1FATG | 0.25 | 0.34 | 0.65 | 0.12 | |
| NP1URIN | 0.18 | 0.73 | 0.56 | 0.30 | |
| NP1SLPD | 0.83 | 0.69 | 0.43 | 0.046 * | |
| NP1PTOT | 0.24 | 0.47 | 0.73 | 0.18 | |
| MDS-UPDRS_Part_I Variables (clinical exams) | NP1COG | 0.99 | 0.83 | 0.19 | 0.42 |
| NP1APAT | 0.50 | 0.59 | 0.22 | 0.10 | |
| NP1DPRS | 0.17 | 0.91 | 0.71 | 0.16 | |
| NP1ANXS | 0.53 | 0.49 | 0.079 | 0.29 | |
| NP1DDS | 0.88 | 0.31 | 0.35 | 0.80 | |
| MDS UPDRS Part II Variables (from patients) | NP2WALK | 0.56 | 0.96 | 0.13 | 0.92 |
| NP2FREZ | 0.02 * | 0.64 | 0.54 | 0.94 | |
| NP2TRMR | 0.79 | 0.25 | 0.62 | 0.92 | |
| NP2TURN | 0.89 | 0.31 | 0.016 * | 0.19 | |
| NP2RISE | 0.0066 * | 0.14 | 0.80 | 0.75 | |
| NP2SPCH | 0.062 | 0.086 | 0.49 | 0.71 | |
| NP2DRES | 0.38 | 0.083 | 0.10 | 0.47 | |
| NP2PTOT | 0.030 * | 0.54 | 0.17 | 0.38 | |
| REM Sleep Behavior Disorder Variables | SLPINJUR | 0.48 | 0.17 | 0.29 | 0.46 |
| DRMFIGHT | 0.60 | 0.72 | 0.94 | 0.16 | |
| DRMUMV | 0.16 | 0.39 | 0.78 | 0.84 | |
| SLPLMBMV | 0.31 | 0.70 | 0.19 | 0.72 | |
| DEPRS | 0.41 | 0.58 | 0.47 | 0.99 | |
| MoCA Variables | MCAALTTM | 0.22 | 0.94 | 0.80 | 0.52 |
| MCACUBE | 0.45 | 0.69 | 0.21 | 0.31 | |
| MCACLCKC | 0.14 | / | 0.28 | / | |
| MCACLCKN | 0.37 | 0.53 | 0.11 | 0.62 | |
| MCACLCKH | 0.50 | 0.33 | 0.037 * | 0.17 | |
| MCAVFNUM | 0.50 | 0.49 | 0.61 | 0.13 | |
| MCAVF | 0.40 | 0.061 | 0.71 | 0.72 | |
| MCASER7 | 0.25 | 0.21 | 0.32 | 0.32 | |
| MCARHINO | 0.78 | 0.12 | 0.93 | 0.46 | |
| SCOPA-AUT Variables | Sexual | 0.44 | 0.52 | 0.33 | 0.43 |
| Thermoreg | 0.013 * | 0.019 * | 0.95 | 0.67 | |
| Cardio | 0.19 | 0.096 | 0.35 | 0.51 | |
| Pupillomotor | 0.27 | 0.062 | 0.57 | 0.079 | |
| Urinary | 0.39 | 0.38 | 0.43 | 0.81 | |
| Blood Chemistry Hematology Variables | LSIRES | 0.79 | 0.68 | 0.49 | 0.59 |
| LUSRES | 0.44 | 0.38 | 0.25 | 0.20 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, V.; Huang, C.K.; Gao, G.; Huang, K.; Yu, L.; Chan, C.; Li, A.; Huang, Z. Multimodal Biomarker Analysis of LRRK2-Linked Parkinson’s Disease Across SAA Subtypes. Processes 2025, 13, 3448. https://doi.org/10.3390/pr13113448
Jiang V, Huang CK, Gao G, Huang K, Yu L, Chan C, Li A, Huang Z. Multimodal Biomarker Analysis of LRRK2-Linked Parkinson’s Disease Across SAA Subtypes. Processes. 2025; 13(11):3448. https://doi.org/10.3390/pr13113448
Chicago/Turabian StyleJiang, Vivian, Cody K Huang, Grace Gao, Kaiqi Huang, Lucy Yu, Chloe Chan, Andrew Li, and Zuyi Huang. 2025. "Multimodal Biomarker Analysis of LRRK2-Linked Parkinson’s Disease Across SAA Subtypes" Processes 13, no. 11: 3448. https://doi.org/10.3390/pr13113448
APA StyleJiang, V., Huang, C. K., Gao, G., Huang, K., Yu, L., Chan, C., Li, A., & Huang, Z. (2025). Multimodal Biomarker Analysis of LRRK2-Linked Parkinson’s Disease Across SAA Subtypes. Processes, 13(11), 3448. https://doi.org/10.3390/pr13113448
