Gas Purification Technology Suitable for Space Mice Cultured in Sealed Box
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Gas Circuit Systems
2.2. Design of Electronic Control Systems
2.3. Gas Adsorption and BET Surface Area Measurements
3. Testing of Materials and Experimental Outcomes
3.1. The Treatment of CO2 Gas and Testing Results
3.2. The Treatment of NH3 Gas and Testing Results
3.3. The Treatment of H2O Humidity and Testing Results
4. Results of the Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronca, A.E.; Lowe, M.G. Rodents as a Model for Research in Space. In Handbook of Space Pharmaceuticals; Pathak, Y.V., dos Santos, M.A., Zea, L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 679–700. [Google Scholar]
- Morey-Holton, E.; Hill, E.; Souza, K. Animals and spaceflight: From survival to understanding. J. Musculoskelet. Neuronal Interact. 2006, 7, 17–25. [Google Scholar]
- Duan, E.-k.; Cao, Y.; Lei, X.; Ma, C. The research progress and prospect of mammalian reproduction and embryonic development under space conditions. Sci. Sin. Vitae 2021, 51, 116–125. [Google Scholar] [CrossRef]
- Burgess, C.; Dubbs, C. (Eds.) High-altitude research. In Animals in Space: From Research Rockets to the Space Shuttle; Springer New York: New York, NY, USA, 2007; pp. 85–119. [Google Scholar]
- West, J.B. Historical aspects of the early Soviet/Russian manned space program. J. Appl. Physiol. 2001, 91, 1501–1511. [Google Scholar] [CrossRef]
- Savina, E.A.; Podymov, V.K.; Alekseev, E.I. Hypothalamo-Pituitary Neurosecretory System of Rats After a 22-Day Space Flight. In Neurosecretion and Neuroendocrine Activity; Bargmann, W., Oksche, A., Polenov, A.L., Scharrer, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; 279p. [Google Scholar]
- Andreev-Andrievskiy, A.; Shenkman, B.; Popova, A.; Dolguikh, O.; Anokhin, K.; Soldatov, P.; Ilyin, E.; Sychev, V. Experimental studies with mice on the program of the biosatellite BION-M1 mission. Aviakosm. I Ekol. Meditsina Aerosp. Environ. Med. 2014, 48, 14–27. [Google Scholar]
- Voels, S.A.; Eppler, D.B. The International Space Station as a platform for space science. Adv. Space Res. 2004, 34, 594–599. [Google Scholar] [CrossRef]
- Sun, G.-S.; Tou, J.C.; Yu, D.; Girten, B.E.; Cohen, J. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments. Nutrition 2014, 30, 125–130. [Google Scholar] [CrossRef]
- Cancedda, R.; Liu, Y.; Ruggiu, A.; Tavella, S.; Biticchi, R.; Santucci, D.; Schwartz, S.; Ciparelli, P.; Falcetti, G.; Tenconi, C.; et al. The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice. PLoS ONE 2012, 7, e32243. [Google Scholar] [CrossRef]
- Andreev-Andrievskiy, A.; Popova, A.; Boyle, R.; Alberts, J.; Vinogradova, O.; Dolgov, O.; Anokhin, K.; Tsvirkun, D.; Soldatov, P.; Nemirovskaya, T.; et al. Mice in Bion-M 1 Space Mission: Training and Selection. PLoS ONE 2014, 9, e104830. [Google Scholar] [CrossRef]
- Shimbo, M.; Kudo, T.; Hamada, M.; Jeon, H.; Imamura, Y.; Asano, K.; Okada, R.; Tsunakawa, Y.; Mizuno, S.; Yagami, K.-I.; et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies. Exp. Anim. 2016, 65, 175–187. [Google Scholar] [CrossRef]
- Niederwieser, T.; Gerren, R.A.; Koenig, P.; Tozer, S.; Stodieck, L.S.; Rieger, S.; Hoehn, A. AEM-E—A small life support system for the transport of rodents to the ISS. In Proceedings of the 44th International Conference on Environmental Systems, Tuscon, AZ, USA, 13–17 July 2014. [Google Scholar]
- Bonting, S.L.; Kishiyama, J.S.; Arno, R.D. Facilities for Animal Research in Space. Adv. Space Biol. Med. 1991, 1, 279–325. [Google Scholar] [CrossRef]
- Hogan, R.P.; Dalton, B.P. Performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) and Other Hardware in the Microgravity Environment. SAE Trans. 1991, 100, 1817–1829. [Google Scholar]
- Savage, P.D.; Jahns, G.C.; Dalton, B.P.; Hogan, R.P.; Wray, A.E. The Rodent Research Animal Holding Facility as a Barrier to Environmental Contamination. SAE Trans. 1989, 98, 879–886. [Google Scholar]
- Shiba, D.; Mizuno, H.; Yumoto, A.; Shimomura, M.; Kobayashi, H.; Morita, H.; Shimbo, M.; Hamada, M.; Kudo, T.; Shinohara, M.; et al. Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—To elucidate the impacts of micro/partial gravity on mice. Sci. Rep. 2017, 7, 10837. [Google Scholar] [CrossRef]
- Mao, X.W.; Byrum, S.; Nishiyama, N.C.; Pecaut, M.J.; Sridharan, V.; Boerma, M.; Tackett, A.J.; Shiba, D.; Shirakawa, M.; Takahashi, S.; et al. Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. Int. J. Mol. Sci. 2018, 19, 2546. [Google Scholar] [CrossRef]
- Obata, K.; Abe, C.; Shiba, D.; Shirakawa, M.; Kudo, T.; Takahashi, S. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments. PLoS ONE 2015, 10, e0133981. [Google Scholar] [CrossRef]
- Berg-Johansen, B.; Liebenberg, E.C.; Li, A.; Macias, B.R.; Hargens, A.R.; Lotz, J.C. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments. J. Orthop. Res. 2016, 34, 48–57. [Google Scholar] [CrossRef]
- Orr, S.; Rhonda, W.; Adams, T.; Raychev, R.; Griko, Y. Environmental Enrichment in the ISS Rodent Habitat Hardware System. Int. J. Biosci. Med. 2017, 1, 6. [Google Scholar] [CrossRef]
- Burnett, C.M.L.; Grobe, J.L. Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Mol. Metab. 2014, 3, 460–464. [Google Scholar] [CrossRef]
- Yanagawa, T.; Kikuchi, Y. Determination of the No-Observed-Adverse-Effect Level by the AIC. Sankhy Indian J. Stat. Ser. B 1995, 57, 285–297. [Google Scholar]
- Iversen, N.K.; Malte, H.; Baatrup, E.; Wang, T. The normal acid–base status of mice. Respir. Physiol. Neurobiol. 2012, 180, 252–257. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Y.; Zhang, J.; Chen, L.; Meng, X.; Xiao, F.-S. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin. J. Catal. 2016, 37, 800–809. [Google Scholar] [CrossRef]
- Zhuo, Z.; Fu, P.; Zhao, B. Studies on Reaction Kinetics of LiOH for Absorbing CO2. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4. [Google Scholar]
- Zilberman, P. The CO2 Absorber Based on LiOH. Acta Medica Marisiensis 2015, 61, 4–6. [Google Scholar] [CrossRef]
- Punpee, S.; Tongpadungrod, P.; Suttikul, T.; Phalakornkule, C. Characteristics of CO2 adsorption and desorption on activated carbon in comparison with zeolite 13X and carbon molecular sieve and applications in biogas upgrading using vacuum pressure swing adsorption. J. Chem. Technol. Biotechnol. 2023, 98, 2677–2690. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghaemi, A.; Qasemnazhand, M. Lithium hydroxide as a high capacity adsorbent for CO2 capture: Experimental, modeling and DFT simulation. Sci. Rep. 2023, 13, 7150. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, L.; Ma, Y.; Cai, Z.; Cao, Y.; Huang, K.; Jiang, L. A Mini-Review on NH3 Separation Technologies: Recent Advances and Future Directions. Energy Fuels 2022, 36, 14516–14533. [Google Scholar] [CrossRef]
- He, Y.; Guan, B.; Zhuang, Z.; Chen, J.; Zhu, L.; Ma, Z.; Hu, X.; Zhu, C.; Zhao, S.; Shu, K.; et al. Advances in ammonia (NH3) adsorption and storage: Materials, mechanisms, and applications. Adsorption 2025, 31, 48. [Google Scholar] [CrossRef]
- Premjet, S.; Dana, S.; Obeng, A.; Premjet, D. Enzymatic response to structural and chemical transformations in Hibiscus sabdariffa var. altissima bark and core during phosphoric acid pretreatment. Bioresources 2018, 13, 6778–6789. [Google Scholar] [CrossRef]
- Lin, L.; Lei, Z.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C.; Lee, D.-J.; Tay, J.H. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Sep. Purif. Technol. 2013, 103, 15–20. [Google Scholar] [CrossRef]
- Rochow, E.G.; Rochow, T.G. The Properties and Molecular Weights of Some Silicone Polymers. J. Phys. Chem. 1951, 55, 9–16. [Google Scholar] [CrossRef]
Product Name | Range | Precision | Working Temperature and Humidity |
---|---|---|---|
CO2-Sense Air | 0.04~2% | ±0.02% ± 3% | 0~50 °C; (0~85) %RH |
O2-SST | 0~25% | <2%FS | −30~60 °C; (0~99) %RH |
NH3-EC Sense | 0~100 ppm | 0.1 ppm | −40~55 °C; (15~95) %RH |
H2S-EC Sense | 0~100 ppm | 0.5 ppm | −40~55 °C; (15~95) %RH |
Product Name | Manufacturer | Key Physical Properties |
---|---|---|
Silica gel | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China | Blue or light blue translucent glass-like irregular small bead-like particles |
5A molecular | Aladdin Reagent Co., Ltd., Shanghai, China | 2–3 mm Particle |
13X molecular | Aladdin Reagent Co., Ltd., Shanghai, China | 2–3 mm Particle |
LiOH | Aladdin Reagent Co., Ltd., Shanghai, China | ≥98%, White powder |
Synthetic zeolite | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China | 5 mm Particle |
Activated carbon | Aladdin Reagent Co., Ltd., Shanghai, China | 4 mm Columnar |
phosphate-modified activated carbon | Aladdin Reagent Co., Ltd., Shanghai, China | 4 mm Columnar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Sun, H.; Zhang, Q.; Zhang, L.; Yuan, S.; Liu, F.; Zhang, T. Gas Purification Technology Suitable for Space Mice Cultured in Sealed Box. Processes 2025, 13, 3277. https://doi.org/10.3390/pr13103277
Yuan R, Sun H, Zhang Q, Zhang L, Yuan S, Liu F, Zhang T. Gas Purification Technology Suitable for Space Mice Cultured in Sealed Box. Processes. 2025; 13(10):3277. https://doi.org/10.3390/pr13103277
Chicago/Turabian StyleYuan, Ru, Haoyuan Sun, Qian Zhang, Le Zhang, Shidong Yuan, Fangwu Liu, and Tao Zhang. 2025. "Gas Purification Technology Suitable for Space Mice Cultured in Sealed Box" Processes 13, no. 10: 3277. https://doi.org/10.3390/pr13103277
APA StyleYuan, R., Sun, H., Zhang, Q., Zhang, L., Yuan, S., Liu, F., & Zhang, T. (2025). Gas Purification Technology Suitable for Space Mice Cultured in Sealed Box. Processes, 13(10), 3277. https://doi.org/10.3390/pr13103277