Evaluation of Ethyl Caproate and Procyanidin in Beverages via Liposome Observation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Liposomes
2.3. Microscopic Observation
2.4. Calibration Curve Method for Estimating Concentrations of EC and PB2
2.5. Characterization for PB2 Concentration Using HPLC
2.6. Statistical Analysis
3. Results and Discussion
3.1. Diameter of Liposomes
3.2. Phase Separation of Liposomes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | ethyl caproate |
PB2 | procyanidin B2 |
PB1 | procyanidin B1 |
PC | procyanidin C |
HPLC | high-performance liquid chromatography |
GC/MS | Gas chromatography–mass spectrometry |
Lo | liquid-ordered |
Ld | liquid-disordered |
So | Solid-ordered |
DOPC | 1,2-Dioleoyl-sn-glycero-3-phosphocholine |
DPPC | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine |
Chol | cholesterol |
Rhodamine SHPE | Lissamine™ rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine and triethylammonium salt |
IA | isoamyl acetate |
IVA | isovaleraldehyde |
IAA | isoamyl alcohol |
AI | artificial intelligence |
References
- Yoda, T.; Miyaki, H.; Saito, T. Freeze concentrated apple juice maintains its flavor. Sci. Rep. 2021, 11, 12679. [Google Scholar] [CrossRef]
- Yoda, T.; Saito, T. Size of Cells and Physicochemical Properties of Membranes are Related to Flavor Production during Sake Brewing in the Yeast Saccharomyces cerevisiae. Membranes 2020, 10, 440. [Google Scholar] [CrossRef]
- Kuribayashi, T.; Kaneoke, M.; Hirata, D.; Watanabe, K.I. Analysis of free fatty acids in sake by an enzymatic method and its application for estimating ethyl caproate and selecting yeast with high productivity of the ester. Biosci. Biotechnol. Biochem. 2012, 76, 391–394. [Google Scholar] [CrossRef]
- Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Gu, L.; Prior, R.L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption1,2. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Masumoto, S.; Moriichi, N.; Kanda, T.; Ohtake, Y. Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS. J. Chromatogr. A 2008, 1102, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T. Methods of Detection for Procyanidins on Apples. Available online: http://fmric.or.jp/ffd/ffmanual/manual40107.pdf (accessed on 31 January 2025). (English Title Translated by the Author, Written in Japanese).
- Yoda, T.; Vestergaard, M.C.; Akazawa-Ogawa, Y.; Yoshida, Y.; Hamada, T.; Takagi, M. Dynamic Response of a Cholesterol-containing Model Membrane to Oxidative Stress. Chem. Lett. 2010, 39, 1273–1274. [Google Scholar] [CrossRef]
- Yoda, T.; Vestergaard, M.C.; Hamada, T.; Le, P.T.M.; Takagi, M. Thermo-induced Vesicular Dynamics of Membranes Containing Cholesterol Derivatives. Lipids 2012, 47, 813–820. [Google Scholar] [CrossRef]
- Dhingra, S.; Morita, M.; Yoda, T.; Vestergaard, M.C.; Hamada, T.; Takagi, M. Dynamic Morphological Changes Induced by GM1 and Protein Interactions on the Surface of Cell-Sized Liposomes. Materials 2013, 6, 2522–2533. [Google Scholar] [CrossRef]
- Sharma, N.; Phan, H.T.T.; Yoda, T.; Shimokawa, N.; Vestergaard, M.C.; Takagi, M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics 2019, 4, 17. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Hata, T.; Morita, M.; Yoda, T.; Hamada, T.; Vestergaard, M.C.; Takagi, M. The effect of oxysterols on the interaction of Alzheimer’s amyloid beta with model membranes. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2487–2495. [Google Scholar] [CrossRef]
- Yoda, T. Quality Evaluation of Drinks Based on Liposome Shape Changes Induced by Flavor Molecules. ACS Omega 2022, 7, 5679–5686. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T. Phase—Separated Structures of Sake Flavors—Containing Cell Model Membranes. Chem. Biodivers. 2023, 20, e202200750. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T. Direct Observation of Cell—Sized Liposomes Containing a Functional Polyphenol Procyanidin B2 from Apple. ChemistrySelect 2022, 7, e202201808. [Google Scholar] [CrossRef]
- Yoda, T. The Flavonoid Molecule Procyanidin Reduces Phase Separation in Model Membranes. Membranes 2022, 12, 943. [Google Scholar] [CrossRef]
- Blosser, M.C.; Cornell, C.E.; Rayermann, S.P.; Keller, S.L. Phase diagrams and tie lines in giant unilamellar vesicles. In The Giant Vesicle Book; Dimova, R., Marques, C.M., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2022; Chapter 18; pp. 401–416. [Google Scholar]
- Yoda, T.; Yamada, Y.; Chounan, Y. Effects of isovaleraldehyde on cell-sized lipid bilayer vesicles. Biophys. Chem. 2021, 279, 106698. [Google Scholar] [CrossRef]
- Yoda, T. Phase Separation in Liposomes Determined by Ergosterol and Classified Using Machine Learning. Microsc. Microanal. 2022, 28, 2130–2137. [Google Scholar] [CrossRef]
- Yamazaki, S.; Nakada, M.; Osawa, K. Study on Functional Ingredients Contained in Apples and Leeks Produced in Nagano Prefecture. Available online: https://www.gitc.pref.nagano.lg.jp/reports/pdf/H29/H29F19.pdf (accessed on 11 July 2025). (In Japanese).
- Takahashi, T.; Ohara, Y.; Sueno, K. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. J. Biosci. Bioeng. 2017, 123, 707–713. [Google Scholar] [CrossRef]
- JAS 0024:2022; Determination of the Procyanidins in Apple Juice―High Performance Liquid Chromatographic Method. Singapore Food Agency: Singapore, 2022. Available online: https://www.maff.go.jp/j/jas/jas_kikaku/attach/pdf/kokujikaisei-226.pdf (accessed on 11 July 2025). (In Japanese)
- Arisawa, K.; Mitsudome, H.; Yoshida, K.; Sugimoto, S.; Ishikawa, T.; Fujiwara, Y.; Ichi, I. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets. Biochem. Biophys. Res. Commun. 2016, 480, 641–647. [Google Scholar] [CrossRef]
- Hamada, T.; Miura, Y.; Komatsu, Y.; Kishimoto, Y.; Vestergaard, M.C.; Takagi, M. Construction of Asymmetric Cell-Sized Lipid Vesicles from Lipid-Coated Water-in-Oil Microdroplets. J. Phys. Chem. B 2008, 112, 14678–14681. [Google Scholar] [CrossRef]
- Morita, M.; Onoe, H.; Yanagisawa, M.; Ito, H.; Ichikawa, M.; Fujiwara, K.; Saito, H.; Takinoue, M. Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions. ChemBioChem 2015, 16, 2029–2035. [Google Scholar] [CrossRef]
- Akashi, K.; Miyata, H.; Itoh, H.; Kinosita, K., Jr. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996, 71, 3242–3250. [Google Scholar] [CrossRef]
- Akashi, K.; Miyata, H.; Itoh, H.; Kinosita, K., Jr. Formation of giant liposomes promoted by divalent cations: Critical role of electrostatic repulsion. Biophys. J. 1998, 74, 2973–2982. [Google Scholar] [CrossRef]
- Webb, C.; Khadke, S.; Schmidt, S.T.; Roces, C.B.; Forbes, N.; Berrie, G.; Perrie, Y. The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics. Pharmaceutics 2019, 11, 653. [Google Scholar] [CrossRef]
- Himeno, H.; Shimokawa, N.; Komura, S.; Andelman, D.; Hamada, T.; Takagi, M. Charge-induced phase separation in lipid membranes. Soft Matter 2014, 10, 7959–7967. [Google Scholar] [CrossRef]
- Davis, J.H.; Clair, J.J.; Juhasz, J. Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures. Biophys. J. 2009, 96, 521–539. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, R.F.M.; Borst, J.; Fedorov, A.; Prieto, M.; Visser, A.J.W.G. Complexity of Lipid Domains and Rafts in Giant Unilamellar Vesicles Revealed by Combining Imaging and Microscopic and Macroscopic Time-Resolved Fluorescence. Biophys. J. 2007, 93, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Morita, M.; Miyakawa, M.; Sugimoto, R.; Hatanaka, A.; Vestergaard, M.C.; Takagi, M. Size-Dependent Partitioning of Nano/Microparticles Mediated by Membrane Lateral Heterogeneity. J. Am. Chem. Soc. 2012, 134, 13990–13996. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Kishimoto, Y.; Nagasaki, T.; Takagi, M. Lateral phase separation in tense membranes. Soft Matter 2011, 7, 9061–9068. [Google Scholar] [CrossRef]
- Hamada, T.; Mizuno, S.; Kitahata, H. Domain dynamics of phase-separated lipid membranes under shear flow. Soft Matter 2022, 18, 9069–9075. [Google Scholar] [CrossRef]
- Sugahara, K.; Shimokawa, N.; Takagi, M. Destabilization of Phase-separated Structures in Local Anesthetic-containing Model Biomembranes. Chem. Lett. 2015, 44, 1604–1606. [Google Scholar] [CrossRef]
- Sugahara, K.; Shimokawa, N.; Takagi, M. Thermal Stability of Phase-Separated Domains in Multicomponent Lipid Membranes with Local Anesthetics. Membranes 2017, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T. Micro-Scale Phase-Separation Liposome Detection System of Flavor Concentrations in Sake, a Traditional Alcoholic Drink in Japan. In Proceedings of the 2022 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, 27–30 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Nair, P.; Christian, D.; Discher, D.E. Polymersomes. In The Giant Vesicle Book; Dimova, R., Marques, C.M., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2022; Chapter 26; pp. 537–550. [Google Scholar]
- Wang, R.; Dang, M.; Zhu, W.; Li, C. Galloyl Group in B-type Proanthocyanidin Dimers Was Responsible for Its Differential Inhibitory Activity on 3T3-L1 Preadipocytes due to the Strong Lipid Raft-Perturbing Potency. J. Agric. Food Chem. 2021, 69, 5216–5225. [Google Scholar] [CrossRef] [PubMed]
- Sambre, P.D.; Ho, J.C.S.; Parikh, A.N. Intravesicular Solute Delivery and Surface Area Regulation in Giant Unilamellar Vesicles Driven by Cycles of Osmotic Stresses. J. Am. Chem. Soc. 2024, 146, 3250–3261. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T. Materials evaluation using cell-sized liposomes. Anal. Methods 2024, 16, 5509–5518. [Google Scholar] [CrossRef]
- Yoda, T. Assessment of beverage quality for ethyl caproate and procyanidin B2 utilizing binary liposomes. Anal. Methods 2024, 16, 6845–6855. [Google Scholar] [CrossRef]
- Hamada, T.; Sato, Y.T.; Nagasaki, T.; Yoshikawa, K. Reversible Photoswitching in a Cell-Sized Vesicle. Langmuir 2005, 21, 7626–7628. [Google Scholar] [CrossRef]
- Ishii, K.; Hamada, T.; Hatakeyama, M.; Sugimoto, R.; Nagasaki, T.; Takagi, M. Reversible Control of Exo- and Endo-Budding Transitions in a Photosensitive Lipid Membrane. ChemBioChem 2009, 10, 251–256. [Google Scholar] [CrossRef]
- Hamada, T.; Sugimoto, R.; Vestergaard, M.; Nagasaki, T.; Takagi, M. Membrane Disk and Sphere: Controllable Mesoscopic Structures for the Capture and Release of a Targeted Object. J. Am. Chem. Soc. 2010, 132, 10528–10532. [Google Scholar] [CrossRef]
- Hamada, T.; Sugimoto, R.; Nagasaki, T.; Takagi, M. Photochemical control of membrane raft organization. Soft Matter 2011, 7, 220–224. [Google Scholar] [CrossRef]
- Muraoka, T.; Shima, T.; Hamada, T.; Morita, M.; Takagi, M.; Tabata, K.V.; Noji, H.; Kinbara, K. Ion Permeation by a Folded Multiblock Amphiphilic Oligomer Achieved by Hierarchical Construction of Self-Assembled Nanopores. J. Am. Chem. Soc. 2012, 134, 19788–19794. [Google Scholar] [CrossRef]
- Bui, T.T.; Suga, K.; Umakoshi, H. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. Langmuir 2016, 32, 6176–6184. [Google Scholar] [CrossRef]
- Bui, T.T.; Suga, K.; Kuhl, T.L.; Umakoshi, H. Melting-Temperature-Dependent Interactions of Ergosterol with Unsaturated and Saturated Lipids in Model Membranes. Langmuir 2019, 35, 10640–10647. [Google Scholar] [CrossRef]
- Bui, T.T.; Suga, K.; Umakoshi, H. Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes. J. Phys. Chem. B 2019, 123, 6161–6168. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Vestergaard, M.; Hamada, T.; Takagi, M. Real-time observation of model membrane dynamics induced by Alzheimer’s amyloid beta. Biophys. Chem. 2010, 147, 81–86. [Google Scholar] [CrossRef]
- Morita, M.; Hamada, T.; Tendo, Y.; Hata, T.; Vestergaard, M.C.; Takagi, M. Selective localization of Alzheimer’s amyloid beta in membrane lateral compartments. Soft Matter 2012, 8, 2816–2819. [Google Scholar] [CrossRef]
- Hamada, T.; Hagihara, H.; Morita, M.; Vestergaard, M.C.; Tsujino, Y.; Takagi, M. Physicochemical Profiling of Surfactant-Induced Mem-brane Dynamics in a Cell-Sized Liposome. J. Phys. Chem. Lett. 2012, 3, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.C.; Morita, M.; Hamada, T.; Takagi, M. Membrane fusion and vesicular transformation induced by Alzheimer’s amyloid beta. Biochim. Biophys. Acta Biomembr. 2013, 1828, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Hamada, T.; Vestergaard, M.C.; Takagi, M. Endo- and exocytic budding transformation of slow-diffusing membrane domains induced by Alzheimer’s amyloid beta. Phys. Chem. Chem. Phys. 2014, 16, 8773–8777. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Touhara, K. Myr-Ric-8A Enhances Gα15-Mediated Ca2+ Response of Vertebrate Olfactory Receptors. Chem. Senses 2009, 34, 15–23. [Google Scholar] [CrossRef]
- Katada, S.; Hirokawa, T.; Oka, Y.; Suwa, M.; Touhara, K. Structural Basis for a Broad but Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site. J. Neurosci. 2005, 25, 1806–1815. [Google Scholar] [CrossRef]
- Kelkar, D.A.; Chattopadhyay, A. The gramicidin ion channel: A model membrane protein. Biochim. Biophys. Acta Biomembr. 2007, 1768, 2011–2025. [Google Scholar] [CrossRef]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Ma, B.; Shi, S.; Chen, Y.; Zhang, H.; Zhan, Y.; An, H. Procyanidin B1, a novel and specific inhibitor of Kv10.1 channel, suppresses the evolution of hepatoma. Biochem. Pharmacol. 2020, 178, 114089. [Google Scholar] [CrossRef]
- Osica, I.; Melo, A.F.A.A.; Lima, F.C.D.A.; Shiba, K.; Imamura, G.; Crespilho, F.N.; Betlej, J.; Kurzydowski, K.J.; Yoshikawa, G.; Ariga, K. Nanomechanical Recognition and Discrimination of Volatile Molecules by Au Nanocages Deposited on Membrane-Type Surface Stress Sensors. ACS Appl. Nano Mater. 2020, 3, 4061–4068. [Google Scholar] [CrossRef]
- Shiba, K.; Yoshikawa, G. Aero-Thermo-Dynamic Mass Analysis. Sci. Rep. 2016, 6, 28849. [Google Scholar] [CrossRef] [PubMed]
- Genç, İ.Y.; Remzi, G.; Açikgözoğlu, E. Quality Determination of Frozen-Thawed Shrimp Using Machine Learning Algorithms Powered by Explainable Artificial Intelligence. Food Anal. Methods 2025, 18, 935–945. [Google Scholar] [CrossRef]
- Uchida, N.; Ryu, Y.; Takagi, Y.; Yoshizawa, K.; Suzuki, K.; Anraku, Y.; Ajioka, I.; Shimokawa, N.; Takagi, M.; Hoshino, N.; et al. Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery. J. Am. Chem. Soc. 2023, 145, 6210–6220. [Google Scholar] [CrossRef]
Intact | Two-Fold | 10-Fold | 100-Fold | |
---|---|---|---|---|
Juice | Unformed | Unformed | Unformed | Formed |
Sake | Formed | - | - | - |
Phase Separation State | Representative Condition | Notes |
---|---|---|
Homogeneous | Control (liposomes in buffer) | No clear domain formation (Figure 2A and Figure 3A) |
Lo/Ld | Apple juice (low concentration) | Typical coexistence of Lo and Ld (Figure 2B) |
Lo/Ld reverse | Apple juice (higher concentration) | Lo domains dispersed within Ld (Figure 3B) |
So/Ld | Sake (undiluted) | Solid-ordered domains observed (Figure 2C and Figure 3C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoda, T.; Yokohama, K.; Notoya, N. Evaluation of Ethyl Caproate and Procyanidin in Beverages via Liposome Observation. Processes 2025, 13, 3275. https://doi.org/10.3390/pr13103275
Yoda T, Yokohama K, Notoya N. Evaluation of Ethyl Caproate and Procyanidin in Beverages via Liposome Observation. Processes. 2025; 13(10):3275. https://doi.org/10.3390/pr13103275
Chicago/Turabian StyleYoda, Tsuyoshi, Kazuhiko Yokohama, and Noriyuki Notoya. 2025. "Evaluation of Ethyl Caproate and Procyanidin in Beverages via Liposome Observation" Processes 13, no. 10: 3275. https://doi.org/10.3390/pr13103275
APA StyleYoda, T., Yokohama, K., & Notoya, N. (2025). Evaluation of Ethyl Caproate and Procyanidin in Beverages via Liposome Observation. Processes, 13(10), 3275. https://doi.org/10.3390/pr13103275