Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin
Abstract
1. Introduction
2. Samples and Methods
2.1. Sample Collection
2.2. Testing and Processing Methods
2.3. Models for Calculating Fractal Dimensions of Pore Structures
- (1)
- Mercury intrusion volume–pressure fractal model
- (2)
- Adsorption volume–pressure fractal model
2.4. Correction Method of MIP Experiments
3. Results and Discussion
3.1. Compressibility Correction of MIP Data
3.2. Fractal Analysis of Pore Structures Using MIP Data
3.3. Fractal Analysis of Pore Structures Using Liquid Nitrogen Data
3.4. Relationship Between Fractal Characteristics of Pore Structure and Its Physical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Fractal dimensions of seepage pores | |
Fractal dimensions of transition pores | |
Fractal dimensions of micropores | |
MIP | Mercury intrusion porosimetry |
SA | Specific surface area |
PV | Pore volume |
micro-CT | Computed micro-tomography |
FIB | Focused ion beams |
SEM | Scanning electron microscopy |
TOC | Total organic carbon |
XRD | X-Ray diffraction |
FHH | Frenkel–Halsey–Hill |
V-S | Pore volume-Specific surface area |
References
- Li, L. Development of natural gas industry in China: Review and prospect. Nat. Gas Ind. B 2022, 9, 187–196. [Google Scholar] [CrossRef]
- Liu, J.; Sun, H.; Lei, Y.; Cao, J. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. J. China Coal Soc. 2020, 45, 258–267. (In Chinese) [Google Scholar]
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Pet. Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, L.; Jiang, T.; Hu, D.; Wu, L.; Wu, J.; Yin, C.; Li, Y.; Hu, Y.; Lin, R.; et al. Ten years of gas shale fracturing in China: Review and prospect. Nat. Gas Ind. B 2022, 9, 158–175. [Google Scholar] [CrossRef]
- Lei, Q.; Weng, D.; Guan, B.; Shi, J.; Cai, B.; He, C.; Sun, Q.; Huang, R. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions. Pet. Explor. Dev. 2023, 50, 944–954. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Y.; Wang, H.; Liu, H.; Wei, W.; Fang, J. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Sun, C.; Nie, H.; Dang, W.; Chen, Q.; Zhang, G.; Li, W.; Lu, Z. Shale gas exploration and development in China: Current status, geological challenges, and future directions. Energy Fuels 2021, 35, 6359–6379. [Google Scholar] [CrossRef]
- Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B. Laboratory characterisation of shale properties. J. Petrol. Sci. Eng. 2012, 88, 107–124. [Google Scholar] [CrossRef]
- Ilgen, A.G.; Heath, J.E.; Akkutlu, I.Y.; Bryndzia, L.T.; Cole, D.R.; Kharaka, Y.K.; Kneafsey, T.J.; Milliken, K.L.; Pyrak-Nolte, L.J.; Suarez-Rivera, R.; et al. Shales at all scales: Exploring coupled processes in mudrocks. Earth-Sci. Rev. 2017, 166, 132–152. [Google Scholar] [CrossRef]
- Neuzil, C.E. Permeability of clays and shales. Annu. Rev. Earth Planet. Sci. 2019, 47, 247–273. [Google Scholar] [CrossRef]
- Masihi, M.; Shams, R.; King, P.R. Pore level characterization of Micro-CT images using percolation theory. J. Petrol. Sci. Eng. 2022, 211, 110113. [Google Scholar] [CrossRef]
- Zang, J.; Liu, J.; He, J.; Zhang, X. Characterization of the pore structure in Chinese anthracite coal using FIB-SEM tomography and deep learning-based segmentation. Energy 2023, 282, 128686. [Google Scholar] [CrossRef]
- Yao, J.; Liu, L.; Yang, Y.; Sun, H.; Zhang, L. Characterizing multi-scale shale pore structure based on multi-experimental imaging and machine learning. Nat. Gas Ind. B 2023, 10, 361–371. [Google Scholar] [CrossRef]
- Li, S.; Dong, M.; Luo, P. A crossflow model for an interacting capillary bundle: Development and application for waterflooding in tight oil reservoirs. Chem. Eng. J. 2017, 164, 133–147. [Google Scholar] [CrossRef]
- Yasuhara, H.; Elsworth, D.; Polak, A. A mechanistic model for compaction of granular aggregates moderated by pressure solution. J. Geophys. Res. Solid Earth 2003, 108, 2530. [Google Scholar] [CrossRef]
- C˘apek, P.; Hejtma´nek, V.; Brabec, L.; Zika´nova´, A.; Kocˇirˇ´k, M. Stochastic reconstruction of particulate media using simulated annealing: Improving pore connectivity. Transp. Porous Med. 2009, 76, 179–198. [Google Scholar]
- Chen, D.; Liu, Y.; Wang, X.; Wang, M. Reconstruction of the microstructure based on hierarchical simulated annealing with erosion method. Physica A 2022, 604, 127694. [Google Scholar] [CrossRef]
- <i>∅</i>ren, P.E.; Bakke, S. Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Med. 2002, 46, 311–343. [Google Scholar]
- Yao, S.; Wang, X.; Yuan, Q.; Zeng, F. Estimation of Shale Intrinsic Permeability with Process-Based Pore Network Modeling Approach. Transp. Porous Med. 2018, 125, 127–148. [Google Scholar] [CrossRef]
- Hajizadeh, A.; Safekordi, A.; Farhadpour, F.A. A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv. Water Resour. 2011, 34, 1256–1267. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, C.; Ren, L.; Yan, W.; An, S.; Chen, B.; Wang, Y.; Zhang, X.; You, C.; Zhang, Y. Reconstruction of 3D porous media using multiple-point statistics based on a 3D training image. J. Nat. Gas Sci. Eng. 2018, 51, 129–140. [Google Scholar] [CrossRef]
- Yan, T.; Xu, X.; Liu, J.; Zhang, Y.; Arif, M.; Xu, X.; Wang, Q. Data-driven predictive model of coal permeability based on microscopic fracture structure characterization. J. Rock Mech. Geotech. 2025, 17, 4476–4489. [Google Scholar] [CrossRef]
- Xi, Z.; Tang, S.; Zhang, S.; Qi, Y.; Wang, X. Evaluation of mechanical properties of porous media materials based on deep learning: Insights from pore structure. Fuel 2024, 371, 131923. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Huang, X.; Yuan, Q.; Zhao, Y.P. Hyperelastic constitutive relations for porous materials with initial stress. J. Mech. Phys. Solids 2024, 193, 105886. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, C.; Liu, S.; Quan, W.; Liu, X. Systematic definition of complexity assembly in fractal porous media. Fractals 2020, 28, 2050079. [Google Scholar] [CrossRef]
- Zhao, M.; Jin, Y.; Liu, X.; Zheng, J.; Liu, S. Characterizing the Complexity Assembly of Pore Structure in a Coal Matrix: Principle, Methodology, and Modeling Application. J. Geophys. Res. Solid Earth 2020, 125, e2020JB020110. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Jin, Y.; Dong, J.; Wang, Q. Effects of surface geometry on advection-diffusion process in rough fractures. Chem. Eng. J. 2021, 414, 128745. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, J.; Dong, J.; Wang, Q.; Liu, Y.; Wang, B.; Song, H. Fractal topography and complexity assembly in multifractals. Fractals 2022, 30, 2250052. [Google Scholar] [CrossRef]
- Li, H.; He, S.; Radwan, A.E.; Xie, J.; Qin, Q. Quantitative analysis of pore complexity in lacustrine organic-rich shale and comparison to marine shale: Insights from experimental tests and fractal theory. Energy Fuels 2024, 38, 16171–16188. [Google Scholar] [CrossRef]
- Fu, X.; Qin, Y.; Zhang, W.; Wei, C.; Zhou, R. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane. Chin. Sci. Bull. 2005, 50, 66–71. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Duan, R.; Xu, Z.; Dong, Y.; Liu, W. Characterization and classification of pore structures in deeply buried carbonate rocks based on mono-and multifractal methods. J. Petrol. Sci. Eng. 2021, 203, 108606. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W.; Liu, Z.; Che, Y. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput. Geosci. 2009, 35, 1159–1166. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, B.; Yang, Y.; Dong, J.; Song, H.; Tian, Y.; Pan, J. Intelligent Extraction of Complexity Types in Fractal Reservoir and its Significance to Estimate Transport Property. Fractals 2024, 32, 2450070. [Google Scholar] [CrossRef]
- Zheng, J.; Jin, Y.; Dong, J.; Liu, S.; Zhang, Q.; Song, H.; Huang, P. Reexamination of the permeability-aperture relationship for rough fractures with mismatched self-affine surfaces. J. Hydrol. 2022, 609, 127727. [Google Scholar] [CrossRef]
- Liu, Z.; Han, J.; Yang, H.; Lv, J.; Dong, S. A new model for coal gas seepage based on fracture-pore fractal structure characteristics. Int. J. Rock Mech. Min. 2024, 173, 105626. [Google Scholar] [CrossRef]
- Perrier, E.; Bird, N.; Rieu, M. Generalizing the fractal model of soil structure: The pore–solid fractal approach. Geoderma 1999, 88, 137–164. [Google Scholar] [CrossRef]
- Pia, G.; Sanna, U. Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials. Appl. Therm. Eng. 2013, 61, 186–192. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, F.; Yang, G.; Guan, X.; Cheng, Z.; Li, H.; Yu, C.; Feng, G.; Yuan, Y. Prediction of relative permeability from capillary pressure based on the fractal capillary bundle model. Appl. Therm. Eng. 2024, 239, 122093. [Google Scholar] [CrossRef]
- Jin, Y.; Li, X.; Zhao, M.; Liu, X.; Li, H. A mathematical model of fluid flow in tight porous media based on fractal assumptions. Int. J. Heat Mass Transf. 2017, 108, 1078–1088. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, D.; Zheng, J.; Dong, J.; Wang, Q.; Huang, H.; Zhao, J.; Liu, S.; Song, H. Principle and approach for the characterization of complexity types and their assembly pattern in natural fractal porous reservoir. Chin. J. Rock Mech. Eng. 2023, 42, 781–797. (In Chinese) [Google Scholar]
- Friesen, W.I.; Mikula, R.J. Fractal dimensions of coal particles. J. Colloid Interface Sci. 1987, 120, 263–271. [Google Scholar] [CrossRef]
- Pfeifer, P.; Wu, Y.J.; Cole, M.W.; Krim, J. Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 1989, 62, 1997–2000. [Google Scholar] [CrossRef]
- Xie, W.; Wang, M.; Wang, H.; Duan, H. Multi-scale fractal characteristics of pores in transitional shale gas reservoir. Nat. Gas Geosci. 2022, 33, 451–460. (In Chinese) [Google Scholar]
- Li, A.; Ding, W.; Jiu, K.; Wang, Z.; Wang, R.; He, J. Investigation of the pore structures and fractal characteristics of marine shale reservoirs using NMR experiments and image analyses: A case study of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China. Mar. Petrol. Geol. 2018, 89, 530–540. [Google Scholar] [CrossRef]
- Mishra, S.; Mendhe, V.A.; Varma, A.K.; Kamble, A.D.; Sharma, S.; Bannerjee, M.; Kalpana, M.S. Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj basin, India. J. Nat. Gas Sci. Eng. 2018, 49, 393–409. [Google Scholar] [CrossRef]
- Liu, S.; Xue, H.; Zhao, M. Pore Structure and Fractal Characteristics of Coal Measure Shale in the Wuxiang Block in the Qinshui Basin. Processes 2023, 11, 3362. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Zhao, C.; Bao, Z.; Li, Z.; Qi, Y.; Chen, L.; Wang, H.; Zhang, Y.; Fang, F. Characterization and fractal characteristics of nano-scale pore structure in shale gas reservoirs: A case study of the deep Longmaxi Formation, Zigong region, Southern Sichuan Basin, China. Front. Earth Sci. 2024, 12, 1410437. [Google Scholar] [CrossRef]
- Wang, R.; Feng, H.; Liu, C. Applicability of mercury intrusion method and nitrogen adsorption method in characterizing pore structure of high-rank coal. Oil Drill. Prod. Technol. 2024, 46, 112–118. (In Chinese) [Google Scholar]
- Song, H.; An, H.; Liu, S.; Yu, Z.; Jin, Y.; Wang, B. Controlling geological factors and coalbed methane enrichment areas in southern Wuxiang block, Qinshui Basin. J. China Coal Soc. 2021, 46, 3974–3987. (In Chinese) [Google Scholar]
- Shao, L.Y.; Yang, Z.Y.; Shang, X.X.; Xiao, Z.H.; Wang, S.; Zhang, W.L.; Zheng, M.Q.; Lu, J. Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui basin, Shanxi Province, China. J. Palaeogeogr. 2015, 4, 384–412. [Google Scholar] [CrossRef]
- GB/T 21650.1-2008; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 1: Mercury Porosimetry. Standards Press of China: Beijing, China, 2008. (In Chinese)
- SY/T 6154-1995; Petroleum and Natural Gas Industry-Steel Pipe for Pipeline Transportation Systems-Technical Delivery Conditions. Petroleum Industry Press: Beijing, China, 1995. (In Chinese)
- Hu, B.; Cheng, Y.; Pan, Z. Classification methods of pore structures in coal: A review and new insight. Gas Sci. Eng. 2023, 110, 204876. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, T.; Xu, H.; Tao, S.; Li, S.; Yin, Z.; Chen, B.; Zhang, C.; Wang, L. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193, 254–264. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Rudolph, V. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry. Part. Part. Syst. Charact. 1999, 16, 25–31. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Yao, Y.; Wang, H. Pore structure and compressibility of coal matrix with elevated temperatures by mercury intrusion porosimetry. Energy Explor. Exploit. 2015, 33, 809–826. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Song, X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 144, 138–152. [Google Scholar] [CrossRef]
- Toda, Y.; Toyoda, S. Application of mercury porosimetry to coal. Fuel 1972, 51, 199–201. [Google Scholar] [CrossRef]
- Lan, Y.; Moghanloo, R.G.; Davudov, D. Pore compressibility of shale formations. SPE J. 2017, 22, 1778–1789. [Google Scholar] [CrossRef]
Classification | Methods/Models | Advantages | Limitations |
---|---|---|---|
Image-based approaches | Micro-CT FIB SEM | High-resolution images of coal rock surface can be obtained, providing direct visual insight on the actual pore structure. | Limited observation scales and small field of view, resulting in incomplete pore distribution information. |
Conceptual models | Capillary (bundle) model Spherical particle model | Abstracts pore, pore throat, or fracture into capillary or spherical particles, which helps to explain the mechanism of diffusion and seepage, mechanics of porous media, etc. | The pore structure is usually simplified based on idealized geometric shapes, making it difficult to fully describe its complexity and changeability. |
Statistical models | Simulated annealing Process-based simulation Multiple-point geostatistics Machine learning | Establish a porous media model using mathematical and statistical methods based on a small amount of slice images or test data, with low cost, high efficiency, and adaptability for different types of pore structures. | The simulation results depend on the accuracy of the initial model and constraint condition and involve a degree of randomness. |
Fractal models | PSF model IFU model Fractal capillary bundle model Pore network models PTSNCF model | Capable of characterizing complexity and heterogeneity of fractal porous media under the guidance of statistical models. | The adaptability range of different fractal porous media model is limited. |
Menger sponge model FHH model V-S model | Calculation model of fractal dimension based on MIP and gas adsorption tests data, which is useful for the quantitative evaluation of fractal characteristics of pore structures. | It is not applicable for calculating the fractal dimension of full-scale pore structures. |
Sample ID | Mercury Intrusion Porosimetry | N2 Adsorption | |||
---|---|---|---|---|---|
() | () | ||||
W4-5 | 1.533 | 1.252 | 0.02081 | 0.00336 | 0.00329 |
W18-6 | 1.378 | 1.352 | 0.01934 | 0.00266 | 0.00205 |
W20-5 | 1.504 | 1.121 | 0.01752 | 0.00166 | 0.00153 |
W23-1 | 1.505 | 1.282 | 0.01722 | 0.00132 | 0.00077 |
W27-6 | 1.654 | 1.968 | 0.03207 | 0.00759 | 0.00657 |
W28-5 | 1.415 | 1.312 | 0.02254 | 0.00297 | 0.00328 |
Sample ID | ||||||
---|---|---|---|---|---|---|
nm | >65 nm | <65 nm | >65 nm | <65 nm | nm | |
W4-5 | 3.204 | 3.105 | 3.7 | 3.062 | 2.396 | 2.911 |
W18-6 | 2.927 | 2.75 | 3.862 | 2.713 | 2.591 | 2.639 |
W20-5 | 3.346 | 3.077 | 3.818 | 2.769 | 2.667 | 2.848 |
W23-1 | 3.239 | 2.962 | 3.818 | 2.813 | 2.556 | 2.840 |
W27-6 | 3.178 | 3.098 | 3.504 | 3.063 | 2.118 | 2.966 |
W28-5 | 3.261 | 3.075 | 3.77 | 3.006 | 2.369 | 2.917 |
Sample ID | ||||
---|---|---|---|---|
W4-5 | 2.758 | 0.996 | 2.414 | 0.998 |
W18-6 | 2.213 | 0.996 | 3.317 | 0.947 |
W20-5 | 2.588 | 0.990 | 2.841 | 0.911 |
W23-1 | 2.473 | 0.990 | 3.692 | 0.995 |
W27-6 | 2.676 | 0.999 | 2.159 | 0.999 |
W28-5 | 2.582 | 0.987 | 3.126 | 0.907 |
Sanple ID | Seepage Pore | Transition Pore | Micropore | |||
---|---|---|---|---|---|---|
PV (cm3/g) | SA (m2/g) | PV (cm3/g) | SA (m2/g) | PV (cm3/g) | SA (m2/g) | |
W4-5 | 0.01557 | 0.14033 | 0.00268 | 0.57139 | 0.00102 | 1.38307 |
W18-6 | 0.07192 | 0.23443 | 0.00148 | 0.21660 | / | / |
W20-5 | 0.01115 | 0.05850 | 0.00116 | 0.19142 | 0.00003 | 0.05621 |
W23-1 | 0.00747 | 0.06528 | 0.00057 | 0.08914 | 0.00000 | 0.00008 |
W27-6 | 0.02637 | 0.25881 | 0.00510 | 1.09231 | 0.00157 | 2.01346 |
W28-5 | 0.01104 | 0.11664 | 0.00199 | 0.35385 | 0.00005 | 0.07845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhao, M. Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin. Processes 2025, 13, 3214. https://doi.org/10.3390/pr13103214
Wang R, Zhao M. Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin. Processes. 2025; 13(10):3214. https://doi.org/10.3390/pr13103214
Chicago/Turabian StyleWang, Rui, and Mengyu Zhao. 2025. "Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin" Processes 13, no. 10: 3214. https://doi.org/10.3390/pr13103214
APA StyleWang, R., & Zhao, M. (2025). Fractal Characteristics of Multi-Scale Pore Structure of Coal Measure Shales in the Wuxiang Block, Qinshui Basin. Processes, 13(10), 3214. https://doi.org/10.3390/pr13103214