Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software
Abstract
1. Introduction
2. Materials and Methods
2.1. Reverse Osmosis Pilot Plant Set-Up
2.2. Calibration Curve and Performance of the Desalination Plant
2.3. Polarization Concentration
2.4. Reverse Osmosis Plant Operation
2.5. Prediction of Polarization Concentration with Python
3. Results and Discussion
3.1. Concentration Polarization Versus Pressure
3.2. Salt Rejection, Recovery and Permeate Flux
3.3. Mathematical Models for Prediction of Flux and Concentration Polarization
3.4. Prediction of Concentration Polarization Using Python Software
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variables | Description | Units |
σ | Electrical conductivity of water at the measured temperature | (μS cm−1) |
t | Temperature at which conductivity was measured in the seawater. | (°C) |
T | Temperature | K |
Vp | Permeate flow rate | (m3 s−1) |
Ame | Membrane area | (m2) |
Fv | Flux | (m s−1) |
μa | Viscosity | (Pa s) |
μs | Viscosity of solution | (Pa s) |
%Ro | Salt rejection observed | (%) |
%Ri | Salt rejection intrinsic | (%) |
Cf | Feed water concentration | (mg L−1) |
Cpe | Permeate water concentration | (mg L−1) |
Rme | Membrane resistance | (1 m−1) |
Ω | Experimental constant with a value of 4.10 × 10−7 for salt from Instant Ocean Sea salt. | |
ℴ0 | Constant for instant ocean sea salt of 0.0209026. | |
ℴ1 | Constant for instant ocean sea salt of 0.0347997. | |
y | The result of the iteration of the previous equation. | |
x | The result of the iteration of the previous equation. | |
z | Mass fraction of salt water in the process. | |
a1, a2, a3, a4 and a5 | Constants for solution viscosity calculation. | |
α | Constant for instant ocean sea salt of 1.061049. | |
δbl | Boundary layer of solute B. | m |
DBA | Diffusion coefficient of solute B in solvent A (mainly water) in the boundary layer. | m2 s−1 |
CB | Concentration of the solute. | kg m−3 |
v | Solution velocity. | m s−1 |
Abbreviations | ||
CONAGUA | National Water Commission | |
CP | Concentration Polarization | |
MED | Multi-Effect Distillation | |
MSF | Multi-Stage Flash | |
NOM | Official Mexican Standard | |
R2 | Determination Coefficient | |
RO | Reverse Osmosis | |
SECIHTI | Secretary of Science, Humanities, Technology and Innovation | |
SMN | National Weather Service | |
SW | Sea water |
References
- INEGI (Instituto Nacional de Estadística y Geografía). Estadísticas del Agua en México. 2025. Cuéntame de México—Sección Educativa. Available online: https://cuentame.inegi.org.mx/explora/geografia/usos_del_agua/#:~:text=El%2070%25%20de%20la%20Tierra,y%20dep%C3%B3sitos%20bajo%20la%20tierra (accessed on 10 July 2025).
- CONAGUA (Comisión Nacional del Agua). Acciones y Programas > Sistema Nacional de Información del Agua SINA. Gobierno de México. Agua en el Mundo Capitulo 8. Available online: https://www.gob.mx/conagua/acciones-y-programas/agua-en-el-mundo (accessed on 22 July 2025).
- Du Plessis, A. Global Water Availability, Distribution and Use. In Freshwater Challenges of South Africa and Its Upper Vaal River; Springer Water; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Musie, W.; Gonfa, G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023, 9, e18685. [Google Scholar] [CrossRef]
- Kabote, S.J. The implication of water accessibility challenges to urban water governance in Morogoro municipality, Tanzania. Heliyon 2024, 10, e28194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, Z.; Lai, C.; He, S.; Jiang, J.; Wang, Z. Attribution and scarcity analysis of blue and green water resources in a river basin under climate and environmental change. Ecol. Indic. 2025, 175, 113574. [Google Scholar] [CrossRef]
- Summers, H.M.; Quinn, J.C. Improving water scarcity footprint capabilities in arid regions through expansion of characterization factor methods. Sci. Total Environ. 2021, 801, 149586. [Google Scholar] [CrossRef] [PubMed]
- CONAGUA (Comisión Nacional del Agua, Parte de la Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT]), Gobierno de México. Available online: https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed on 30 April 2025).
- Chávez, J.A.V. Calidad del agua y desarrollo sostenible. Rev. Peru. Med. Exp. Salud Pública 2018, 35, 304–308. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Tareemi, A.A.; Sharshir, S.W. A state-of-art overview of multi-stage flash desalination and water treatment: Principles, challenges, and heat recovery in hybrid systems. Sol. Energy 2023, 266, 112157. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Lababidi, H.M.; Al-Adwani, H.; Gleason, K.K. A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination 2018, 442, 75–88. [Google Scholar] [CrossRef]
- Prajapati, M.; Shah, M.; Soni, B. A comprehensive review of the geothermal integrated multi-effect distillation (MED) desalination and its advancements. Groundw. Sustain. Dev. 2022, 19, 100808. [Google Scholar] [CrossRef]
- Darre, N.C.; Toor, G.S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- Ríos-Arriola, J.; Velázquez, N.; Aguilar-Jiménez, J.A.; Dévora-Isiordia, G.E.; Cásares-de la Torre, C.A.; Corona-Sánchez, J.A.; Islas, S. State of the Art of Desalination in Mexico. Energies 2022, 15, 8434. [Google Scholar] [CrossRef]
- Robles-Lizárraga, A.; Martínez-Macías, M.d.R.; Encinas-Guzmán, M.I.; Larraguibel-Aganza, O.d.J.; Rodríguez-López, J.; Dévora-Isiordia, G.E. Design of reverse osmosis desalination plant in Puerto Peñasco, Sonora, México. Desalination Water Treat. 2020, 175, 1–10. [Google Scholar] [CrossRef]
- Dévora Isiordia, G.E.; Robles Lizárraga, A.; Fimbres Weihs, G.A.; Álvarez Sánchez, J. Comparación de métodos de descarga para vertidos de salmueras, provenientes de una planta desalinizadora en Sonora, México. Rev. Int. Contam. Ambient. 2017, 33, 45–54. [Google Scholar] [CrossRef]
- Miraflores, A.H.; Gomez, K.H.; Muro, C.; Hernandez, M.C.D.; Blancas, V.D.; Alvarez Sanchez, J.; Isordia, G.E.D. UltrapureWater Production by a Saline Industrial Effluent Treatment. Membranes 2025, 15, 116. [Google Scholar] [CrossRef]
- Montero-Guadarrama, I.; Muro Urista, C.; Roa-Morales, G.; Gutierrez Segura, E.E.; Diaz-Blancas, V.; Devora-Isiordia, G.E.; Alvarez-Sanchez, J. Reverse Osmos Coupled with Ozonation for CleanWater Recovery from an Industrial Effluent: Technical and Economic Analyses. Membranes 2025, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Armendáriz-Ontiveros, M.M.; Dévora-Isiordia, G.E.; Rodríguez-López, J.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J.; Villegas-Peralta, Y.; Martínez-Macias, M.d.R. Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System. Energies 2022, 15, 7787. [Google Scholar] [CrossRef]
- Ismail, A.F.; Matsuura, T. Membrane Separation Processes: Theories, Problems, and Solutions; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Dévora-Isiordia, G.E.; Cásares-De la Torre, C.A.; Morales-Mendívil, D.P.; Montoya-Pizeno, R.; Velázquez-Limón, N.; Aguilar-Jiménez, J.A.; Ríos-Arriola, J. Evaluation of Concentration Polarization Due to the Effect of Feed Water Temperature Change on Reverse Osmosis Membranes. Membranes 2023, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Kucera, J. Reverse Osmosis: Industrial Processes and Applications, 2nd ed.; Scrivener Publishing LLC: Austin, TX, USA, 2015. [Google Scholar] [CrossRef]
- Ding, H.; Hao, N.; Cao, Q.; Hei, S.; Zhong, X.; Liang, S.; Huang, X. A Multi- Model Ensemble for Advanced Prediction of Reverse Osmosis Performance in Full-Scale Zero-Liquid Discharge Systems. Environ. Sci. Technol. 2025, 59, 17617–17627. [Google Scholar] [CrossRef]
- Teng, Y.; Ng, H.Y. Prediction of reverse osmosis membrane fouling in water reuse by integrated adsorption and data-driven models. Desalination 2024, 576, 117353. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S.; Alsubaie, F.M.; Wazeer, I. Key factors affecting water permeate velocity in reverse osmosis based on concentration polarization model. Desalination Water Treat. 2018, 120, 1–8. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S. Toward developing key performance indicators for desalination processes. Desalination Water Treat. 2022, 263, 15–24. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S.; Alsubaie, F.M. Development of a mathematical model for the prediction of concentration polarization in reverse osmosis desalination processes. Desalination Water Treat. 2017, 71, 19–24. [Google Scholar] [CrossRef]
- Dévora-Isiordia, G.E.; Villegas-Peralta, Y.; Piña-Martinez, H.A.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J. Determination of the concentration polarization in a reverse osmosis plant to desalinate sea water Determinación de polarización de la concentración en una planta de ósmosis inversa para desalinizar agua de mar. Rev. Mex. Ing. Química 2023, 22, 2349. [Google Scholar] [CrossRef]
- NIST. Thermophysical Properties of Fluid Systems. 2018. Available online: https://webbook.nist.gov/chemistry/fluid (accessed on 13 August 2025).
- Jiang, J.; Sandler, S.I. A New Model for the Viscosity of Electrolyte Solutions. Ind. Eng. Chem. Res. 2003, 42, 6267–6272. [Google Scholar] [CrossRef]
- Armendáriz-Ontiveros, M.M.; Álvarez-Sánchez, J.; Dévora-Isiordia, G.E.; García, A.; Fimbres Weihs, G.A. Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs). Chem. Eng. Sci. 2020, 223, 115753. [Google Scholar] [CrossRef]
- Ma, S.; Wu, X.; Fan, L.; Wang, Q.; Hu, Y.; Xie, Z. Effect of Different Draw Solutions on Concentration Polarization in a Forward Osmosis Process: Theoretical Modeling and Experimental Validation. Ind. Eng. Chem. Res. 2023, 62, 3672–3683. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, D.; Fan, B.; Chen, S.; Lin, P.; Zhu, Z. Numerical study of concentration polarization of reverse osmosis film via the lattice Boltzmann method. Desalination 2024, 583, 117731. [Google Scholar] [CrossRef]
- Prakash, N.; Chaudhuri, A.; Das, S.P. Evaluating the advantage of turbulent flow to diminish concentration polarization in Roto-dynamic RO system. Chem. Eng. Process. Process Intensif. 2024, 197, 109718. [Google Scholar] [CrossRef]
- Bai, W.; Samineni, L.; Chirontoni, P.; Krupa, I.; Kasak, P.; Popelka, A.; Saleh, N.B.; Kumar, M. Quantifying and reducing concentration polarization in reverse osmosis systems. Desalination 2023, 554, 116480. [Google Scholar] [CrossRef]
- Lenntech. FilmTecTM Membranes. Product Data Sheet. Hoja Técnica SW30-2540 Dow-FilmtecTM (Publication No. 45-D01519-en). Available online: https://www.lenntech.com/Data-sheets/DuPont-FilmTec-SW30-2540-L.pdf (accessed on 21 August 2025).
- Secretaría de Salud. Norma Oficial Mexicana NOM-127-SSA1-2021. Salud Ambiental, Agua Para Consumo Humano-Límites Permisibles de Calidad y Tratamiento Que Debe Someterse el Agua Para su Potabilización. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5650705&fecha=02/05/2022#gsc.tab=0 (accessed on 23 July 2025).
- Giacobbo, A.; Moura Bernardes, A.; Filipe Rosa, M.J.; De Pinho, M.N. Concentration polarization in ultrafiltration/nanofiltration for the recovery of polyphenols from winery wastewaters. Membranes 2018, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Medina-Collana, J.; Ancieta-Dextre, C.; Rodriguez-Taranco, O.; Carrasco-Venegas, L.; Monstaño-Pisfil, J.; Díaz-Bravo, P.; Vazquez-Llanos, S. Brackish water desalination by nanofiltration–effect of process parameters. J. Ecol. Eng. 2024, 25, 347–356. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear Regression. In An Introduction to Statistical Learning; Springer Texts in Statistics; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Nolasco Medrano, I. Estudio del Efecto de la Velocidad y la Presión Transmembrana en el Flux Másico en la Ultrafiltración de Suero de Leche; Benemérita Universidad Autónoma de Puebla: Puebla, Mexico, 2019. [Google Scholar]
- Mohammadi, H.; Gholami, M.; Rahimi, M. Application and optimization in chromium-contaminated wastewater treatment of the reverse osmosis technology. Desalination Water Treat. 2009, 9, 229–233. [Google Scholar] [CrossRef]
- Dencheva-Zarkova, M.; Genova, J.; Tsibranska, I. Effect of pressure and cross-flow velocity on membrane behaviour in red wine nanofiltration. J. Phys. Conf. Ser. 2023, 2436, 012013. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, J.; Dévora-Isiordia, G.E.; Muro, C.; Villegas-Peralta, Y.; Sánchez-Duarte, R.G.; Torres-Valenzuela, P.G.; Pérez-Sicairos, S. Improved Flux Performance in Brackish Water Reverse Osmosis Membranes by Modification with ZnO Nanoparticles and Interphase Polymerization. Membranes 2024, 14, 207. [Google Scholar] [CrossRef]
- Alvarado Zuleta, D.J.; Tenezaca González, D.J. Investigación del Margen de Error de la Generación de Desechos Sólidos en el Cantón de Saraguro, en Función de la Desviación Estándar y el Nivel de Confianza. 2023. Available online: https://dspace.ucacue.edu.ec/server/api/core/bitstreams/e0acd875-d14e-4b4c-a33c-56cba977c314/content (accessed on 17 August 2025).
- Ruiz-Espejo, M. Estimación de la desviación estándar. Estadística Española 2017, 59, 37–44. Available online: https://ine.es/ss/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=attachment%3B+filename%3Dart_192_3.pdf&blobkey=urldata&blobtable=MungoBlobs&blobwhere=102%2F548%2Fart_192_3%2C1.pdf&ssbinary=true (accessed on 28 July 2025).
- Kim, S.; Hoek, E.M. Modeling concentration polarization in revers osmosis processes. Desalination 2005, 186, 111–128. [Google Scholar] [CrossRef]
Equation | Equation Number | Description and Reference |
---|---|---|
(2) | Adjustment interactions between the conductivity of synthetic seawater and seawater [31] | |
(3) | Viscosity of distilled water [32] | |
(4) | Permeate flux [22,23] | |
(5) | Viscosity of the salt water [32,33] | |
(6) | Observed salt rejection [22,23,31] | |
(7) | Intrinsic rejection of salts [31,34] |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 0.69 | 26.45 | 27.6 | 9.86 | 99.30 | 1.01 |
2 | 1.52 | 27.18 | 73.2 | 26.14 | 99.51 | 1.02 |
3 | 1.93 | 29.16 | 102.0 | 36.43 | 99.50 | 1.02 |
4 | 2.76 | 27.54 | 136.8 | 48.86 | 99.65 | 1.04 |
5 | 3.10 | 31.23 | 168.0 | 60.00 | 99.70 | 1.06 |
6 | 3.59 | 32.46 | 204.0 | 72.86 | 99.64 | 1.10 |
7 | 4.83 | 29.56 | 241.2 | 86.14 | 99.68 | 1.22 |
8 | 5.38 | 34.43 | 278.4 | 99.43 | 99.64 | 1.29 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 1.38 | 26.42 | 45.6 | 16.29 | 99.55 | 1.01 |
2 | 1.93 | 28.64 | 77.4 | 27.64 | 99.56 | 1.02 |
3 | 2.62 | 27.27 | 109.2 | 39.00 | 99.63 | 1.05 |
4 | 3.03 | 29.91 | 142.2 | 50.79 | 99.70 | 1.08 |
5 | 3.52 | 32.01 | 169.8 | 60.64 | 99.68 | 1.10 |
6 | 4.41 | 31.68 | 206.4 | 73.71 | 99.66 | 1.22 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 1.86 | 26.60 | 42 | 15.00 | 99.07 | 1.02 |
2 | 2.48 | 27.30 | 77.4 | 27.21 | 99.35 | 1.03 |
3 | 3.03 | 30.15 | 109.2 | 39.00 | 99.33 | 1.05 |
4 | 3.52 | 29.91 | 142.2 | 50.79 | 99.37 | 1.10 |
5 | 4.41 | 28.91 | 169.8 | 60.64 | 99.33 | 1.15 |
6 | 4.83 | 33.25 | 205.8 | 73.50 | 99.34 | 1.23 |
7 | 5.38 | 35.95 | 259.8 | 92.79 | 99.17 | 1.29 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 2.21 | 27.94 | 40.80 | 14.57 | 98.87 | 1.03 |
2 | 3.17 | 26.99 | 78.00 | 27.86 | 99.21 | 1.04 |
3 | 3.59 | 30.21 | 106.8 | 38.14 | 99.23 | 1.09 |
4 | 4.48 | 28.82 | 141.0 | 50.36 | 99.22 | 1.19 |
5 | 5.38 | 28.85 | 179.4 | 64.07 | 99.35 | 1.31 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 2.69 | 27.86 | 43.20 | 15.43 | 98.79 | 1.04 |
2 | 3.03 | 26.75 | 59.40 | 21.21 | 98.92 | 1.07 |
3 | 3.38 | 26.60 | 72.66 | 25.95 | 99.32 | 1.08 |
4 | 3.79 | 29.70 | 90.60 | 32.36 | 99.17 | 1.10 |
5 | 4.00 | 31.72 | 107.40 | 38.36 | 99.13 | 1.14 |
6 | 4.41 | 29.45 | 121.62 | 43.44 | 99.26 | 1.18 |
7 | 5.10 | 27.26 | 141.00 | 50.36 | 99.43 | 1.31 |
8 | 5.38 | 32.03 | 154.80 | 55.29 | 99.36 | 1.39 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 3.17 | 27.91 | 44.40 | 15.86 | 98.64 | 1.05 |
2 | 3.59 | 26.08 | 61.80 | 22.07 | 99.03 | 1.09 |
3 | 4.00 | 31.09 | 84.00 | 30.00 | 99.05 | 1.13 |
4 | 4.55 | 28.06 | 86.40 | 30.86 | 99.24 | 1.16 |
5 | 4.69 | 33.21 | 108.00 | 38.57 | 99.19 | 1.22 |
6 | 4.76 | 36.29 | 122.40 | 43.71 | 99.14 | 1.27 |
7 | 5.65 | 32.66 | 144.00 | 51.43 | 99.32 | 1.41 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 3.72 | 27.12 | 47.06 | 16.81 | 98.61 | 1.12 |
2 | 4.41 | 25.90 | 62.10 | 22.18 | 98.93 | 1.21 |
3 | 4.69 | 26.26 | 75.54 | 26.98 | 99.11 | 1.25 |
4 | 4.83 | 30.25 | 92.21 | 32.93 | 99.03 | 1.27 |
5 | 5.38 | 27.25 | 97.80 | 34.92 | 99.21 | 1.41 |
6 | 5.65 | 32.53 | 123.36 | 44.06 | 99.01 | 1.45 |
No. | P (MPa) | T (°C) | Vp (L h−1) | Fv (L m−2 h−1) | Ro % | CP |
---|---|---|---|---|---|---|
1 | 4.14 | 26.45 | 45.69 | 16.32 | 98.47 | 1.17 |
2 | 4.55 | 31.76 | 62.52 | 22.33 | 98.53 | 1.25 |
3 | 5.10 | 26.90 | 80.11 | 28.61 | 99.03 | 1.34 |
4 | 5.45 | 32.50 | 95.27 | 34.03 | 98.94 | 1.43 |
5 | 5.79 | 31.72 | 107.40 | 38.36 | 99.05 | 1.50 |
No. | Concentration (mg L−1) | Linear Mathematical Models of Permeate Flux (L m−2 h−1) | R2 |
---|---|---|---|
1 | 4830 | y = 18.909x − 1.2749 | 0.9888 |
2 | 9950 | y = 19.049x − 9.1121 | 0.9952 |
3 | 15,030 | y = 20.691x − 24.089 | 0.9804 |
4 | 20,200 | y = 15.752x − 20.316 | 0.9951 |
5 | 24,860 | y = 14.698x − 23.087 | 0.9898 |
6 | 29,890 | y = 14.762x − 30.007 | 0.9787 |
7 | 34,850 | y = 14.667x − 39.767 | 0.9544 |
8 | 39,850 | y = 13.225x − 38.271 | 0.9980 |
No. | Concentration (mg L−1) | Mathematical Models of Concentration Polarization | R2 |
---|---|---|---|
1 | 4830 | y = −0.0012x4 + 0.0147x3 − 0.0446x2 + 0.0537x + 0.9911 | 0.9990 |
2 | 9950 | y = 0.0104x4 − 0.1119x3 + 0.4449x2 − 0.7237x + 1.421 | 0.9996 |
3 | 15,030 | y = 0.003x4 − 0.0043x3 + 0.037x2 − 0.0892x + 1.0758 | 0.9905 |
4 | 20,200 | y = 0.0026x2 − 0.1045x + 1.1255 | 0.9947 |
5 | 24,860 | y = −0.0004x4 + 0.0196x3 − 0.1542x2 + 0.4886x + 0.4832 | 0.9977 |
6 | 29,890 | y = −0.1011x4 + 1.75x3 − 11.154x2 + 31.153x − 31.162 | 0.9978 |
7 | 34,850 | y = −0.025x3 + 0.3904x2 − 1.816x + 3.7605 | 0.9953 |
8 | 39,850 | y = 0.0127x3 − 0.1683x2 + 0.9226x − 0.6666 | 0.9976 |
Pressure (MPa) | Experimental | Theoretical | Standard Deviation | Variance | R2 Linear | R2 Polynomial |
---|---|---|---|---|---|---|
Brackish water calculations at 4830 mg L−1 | ||||||
0.69 | 1.01 | 1.01 | 0.001 | 1.1 × 10−6 | 0.8980 | 0.9990 |
1.52 | 1.02 | 1.01 | 0.004 | 1.3 × 10−5 | ||
1.93 | 1.02 | 1.02 | 0.002 | 2.8 × 10−6 | ||
2.76 | 1.04 | 1.04 | 0.001 | 5.7 × 10−7 | ||
3.10 | 1.06 | 1.06 | 0.003 | 7.0 × 10−6 | ||
3.59 | 1.10 | 1.09 | 0.007 | 5.4 × 10−5 | ||
4.83 | 1.22 | 1.21 | 0.005 | 2.4 × 10−5 | ||
5.38 | 1.29 | 1.27 | 0.012 | 1.5 × 10−4 | ||
Brackish water calculations at 9950 mg L−1 | ||||||
1.38 | 1.01 | 1.01 | 0.002 | 5.2 × 10−6 | 0.8551 | 0.9996 |
1.93 | 1.02 | 1.02 | 0.001 | 9.2 × 10−7 | ||
2.62 | 1.05 | 1.06 | 0.005 | 2.1 × 10−5 | ||
3.03 | 1.08 | 1.08 | 0.002 | 5.3 × 10−6 | ||
3.52 | 1.10 | 1.10 | 0.001 | 2.2 × 10−6 | ||
4.41 | 1.22 | 1.22 | 0.001 | 3.2 × 10−7 | ||
Saline water calculations at 15,030 mg L−1 | ||||||
1.86 | 1.02 | 1.01 | 0.004 | 1.7 × 10−5 | 0.9398 | 0.9905 |
2.48 | 1.03 | 1.03 | 0.001 | 9.6 × 10−7 | ||
3.03 | 1.05 | 1.05 | 0.001 | 2.1 × 10−6 | ||
3.52 | 1.10 | 1.08 | 0.014 | 2.0 × 10−4 | ||
4.41 | 1.15 | 1.15 | 0.001 | 5.3 × 10−7 | ||
4.83 | 1.23 | 1.19 | 0.029 | 8.4 × 10−4 | ||
5.38 | 1.29 | 1.25 | 0.027 | 7.5 × 10−4 | ||
Saline water calculations at 20,200 mg L−1 | ||||||
2.21 | 1.03 | 1.02 | 0.006 | 3.6 × 10−5 | 0.9230 | 0.9947 |
3.17 | 1.04 | 1.06 | 0.011 | 1.2 × 10−4 | ||
3.59 | 1.09 | 1.09 | 0.003 | 1.2 × 10−5 | ||
4.48 | 1.19 | 1.18 | 0.007 | 5.5 × 10−5 | ||
5.38 | 1.31 | 1.32 | 0.004 | 1.6 × 10−5 | ||
Saline water calculations at 24,860 mg L−1 | ||||||
2.69 | 1.04 | 1.04 | 0.002 | 2.6 × 10−6 | 0.9441 | 0.9977 |
3.03 | 1.07 | 1.06 | 0.007 | 5.5 × 10−5 | ||
3.38 | 1.08 | 1.08 | 0.002 | 2.7 × 10−6 | ||
3.79 | 1.10 | 1.10 | 0.003 | 1.0 × 10−5 | ||
4.00 | 1.14 | 1.12 | 0.012 | 1.5 × 10−4 | ||
4.41 | 1.18 | 1.17 | 0.008 | 6.3 × 10−5 | ||
5.10 | 1.31 | 1.29 | 0.012 | 1.3 × 10−4 | ||
5.38 | 1.39 | 1.37 | 0.017 | 3.0 × 10−4 | ||
Saline water calculations at 29,890 mg L−1 | ||||||
3.17 | 1.05 | 1.04 | 0.004 | 1.4 × 10−5 | 0.9291 | 0.9778 |
3.59 | 1.09 | 1.10 | 0.007 | 4.9 × 10−5 | ||
4.00 | 1.13 | 1.10 | 0.018 | 3.3 × 10−4 | ||
4.55 | 1.16 | 1.18 | 0.015 | 2.3 × 10−4 | ||
4.69 | 1.22 | 1.22 | 0.001 | 4.9 × 10−7 | ||
4.76 | 1.27 | 1.24 | 0.021 | 4.6 × 10−4 | ||
5.65 | 1.41 | 1.40 | 0.009 | 8.4 × 10−5 | ||
Sea water calculations at 34,850 mg L−1 | ||||||
3.72 | 1.12 | 1.12 | 0.000 | 1.4 × 10−7 | 0.9740 | 0.9953 |
4.41 | 1.21 | 1.20 | 0.007 | 4.7 × 10−5 | ||
4.69 | 1.25 | 1.25 | 0.001 | 1.4 × 10−6 | ||
4.83 | 1.27 | 1.28 | 0.007 | 4.9 × 10−5 | ||
5.38 | 1.41 | 1.40 | 0.009 | 8.1 × 10−5 | ||
5.65 | 1.45 | 1.45 | 0.003 | 6.4 × 10−6 | ||
Sea water calculations at 39,850 mg L−1 | ||||||
4.14 | 1.17 | 1.17 | 0.000 | 1.1 × 10−7 | 0.9950 | 0.9976 |
4.55 | 1.25 | 1.24 | 0.005 | 2.2 × 10−5 | ||
5.10 | 1.34 | 1.35 | 0.004 | 1.7 × 10−5 | ||
5.45 | 1.43 | 1.42 | 0.008 | 6.6 × 10−5 | ||
5.79 | 1.50 | 1.50 | 0.001 | 1.5 × 10−6 |
Software | Model | CP | Feed Water (mg L−1) | References |
---|---|---|---|---|
Results of this research | ||||
Excel, 16.66.1. Phyton 3.13 | Film theory | 1.01–1.5 | 4830–39,850 | [31,34] |
Results from other research studies | ||||
Excel 16.66.1. Matlab R2023a | Film theory | 1.094 a 1.106 | 5000 | Dévora-Isiordia et al., 2023 [24] |
Excel, 16.66.1. Matlab R2023a | Exponential with activity correction | 1.092 a 1.106 | 10,000 | Dévora-Isiordia et al., 2023 [24] |
Excel 16.66.1. | Film theory | 1.007 a 1.022 | 10,000 | Dévora-Isiordia et al., 2022 [21] |
Matlab, R2023a Comsol, 6.2 Aspen V11.0 | Film theory | 1.25 | 2922 (NaCl) | Kim and Hoek (2005) [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Sánchez, J.; Dévora-Isiordia, G.E.; Villegas-Peralta, Y.; Chaparro-Valdez, L.E.; Meza-Tarin, S.A.; Muro-Urista, C.R.; Sánchez-Duarte, R.G.; Pérez-Sicairos, S.; Medina-Bojorquez, E.; Rascon-Leon, S. Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software. Processes 2025, 13, 3139. https://doi.org/10.3390/pr13103139
Álvarez-Sánchez J, Dévora-Isiordia GE, Villegas-Peralta Y, Chaparro-Valdez LE, Meza-Tarin SA, Muro-Urista CR, Sánchez-Duarte RG, Pérez-Sicairos S, Medina-Bojorquez E, Rascon-Leon S. Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software. Processes. 2025; 13(10):3139. https://doi.org/10.3390/pr13103139
Chicago/Turabian StyleÁlvarez-Sánchez, Jesús, Germán Eduardo Dévora-Isiordia, Yedidia Villegas-Peralta, Luis Enrique Chaparro-Valdez, Sebastian Alonso Meza-Tarin, Claudia Rosario Muro-Urista, Reyna Guadalupe Sánchez-Duarte, Sergio Pérez-Sicairos, Emilio Medina-Bojorquez, and Salvador Rascon-Leon. 2025. "Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software" Processes 13, no. 10: 3139. https://doi.org/10.3390/pr13103139
APA StyleÁlvarez-Sánchez, J., Dévora-Isiordia, G. E., Villegas-Peralta, Y., Chaparro-Valdez, L. E., Meza-Tarin, S. A., Muro-Urista, C. R., Sánchez-Duarte, R. G., Pérez-Sicairos, S., Medina-Bojorquez, E., & Rascon-Leon, S. (2025). Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software. Processes, 13(10), 3139. https://doi.org/10.3390/pr13103139