Boron Removal in the Aqueous Phase Using Agave Bagasse Biochar and Zeolite Packaging
Abstract
1. Introduction
1.1. Effect of Boron on Living Beings
1.2. Materials Used for Boron Removal from Water
1.3. Standards Related to Boron in Water
1.4. Importance of the Parameters Analyzed in Water
1.5. Previous Research on Boron Removal from Water
1.6. Boron Content in Salado River
1.7. Research Novelty and Objective
2. Materials and Methods
2.1. Column Packing Material
2.2. Water Samples
2.3. Columns Construction Procedure
2.4. Experimental Design
2.5. Sample Analysis
2.6. Results Analysis
3. Results
3.1. Boron Removal Results
3.2. Physical Parameters Analyzed
3.3. Results of Factorial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC/CE | Electric Conductivity |
SDT/TDS | Total Dissolved Solids |
References
- Padrón Cruz, A.C.; Cantú Martínez, P.C. El Recurso Agua En El Entorno de Las Ciudades Sustentables. Cult. Científica Tecnológica 2009, 6, 15–25. [Google Scholar]
- Bolan, S.; Wijesekara, H.; Amarasiri, D.; Zhang, T.; Ragályi, P.; Brdar-Jokanović, M.; Rékási, M.; Lin, J.Y.; Padhye, L.P.; Zhao, H.; et al. Boron Contamination and Its Risk Management in Terrestrial and Aquatic Environmental Settings. Sci. Total Environ. 2023, 894, 164744. [Google Scholar] [CrossRef]
- Toledo, A. El Agua de México y El Mundo. Gac. Ecológica 2002, 64, 9–18. [Google Scholar]
- Ogoyi, D.O.; Mwita, C.J.; Nguu, E.K.; Shiundu, P.M. Determination of Heavy Metal Content in Water, Sediment and Microalgae from Lake Victoria, East Africa. Open Environ. Eng. J. 2011, 4, 156. [Google Scholar] [CrossRef]
- Radwan, M. River Water Quality Modelling as Water Resources Management Tool at Catchment Scale. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2002. [Google Scholar]
- Avelar Roblero, J.U.; Ortega Escobar, H.M.; Mancilla Villa, O.R.; Ramírez Ayala, C.; Mendoza Saldívar, I.; Khalil Gardezi, A. Calidad Agronómica de Las Aguas Residuales En Los Distritos de Riego Tula y Alfajayucan. Rev. Int. Contam. Ambient. 2023, 39, 487–499. [Google Scholar] [CrossRef]
- Marquina Luciano, J.L.; Paredes Torres, C.J. Reducción de La Concentración de Boro En Agua Con Agentes Espumantes, Los Olivos-2023. In Repositorio Institucional-UCV; Universidad Cesar Vallejo: Trujillo, Peru, 2023. [Google Scholar]
- Ofelia, E.; De, J.; Cruz, L.A. Calidad Agrícola de Las Aguas Superficiales y Subterráneas de La Cuenca Del Oriental y Del Valle de Tehuacán-Zapotitlán, Estado de Puebla. 2021. Available online: http://hdl.handle.net/10521/4717 (accessed on 14 June 2025).
- Santoyo de la Cruz, M.F.; Ortega Escobar, H.M.; Mancilla Villa, O.R.; Ramírez Ayala, C.; Martínez Villegas, E.; Sánchez Bernal, E.I.; Santoyo de la Cruz, M.F.; Ortega Escobar, H.M.; Mancilla Villa, O.R.; Ramírez Ayala, C.; et al. Análisis Iónico de Las Aguas de Seis Lagos Cráter de La Cuenca Oriental, México. Idesia 2022, 40, 7–15. [Google Scholar] [CrossRef]
- Linnik, P.M.; Zubenko, I.B. Role of Bottom Sediments in the Secondary Pollution of Aquatic Environments by Heavy-Metal Compounds. Lakes Reserv. 2000, 5, 11–21. [Google Scholar] [CrossRef]
- Malavé Acuña, A. Los Suelos Como Fuente de Boro Para Las Plantas. Rev. Científica UDO Agrícola 2005, 5, 10–26. [Google Scholar]
- Ahmad, W.; Zia, M.H.; Malhi, S.S.; Niaz, A. Saifullah Boron Deficiency in Soils and Crops: A Review. In Crop Plant; InTech: Houston, TX, USA, 2012; pp. 77–114. [Google Scholar]
- INECC Instituto Nacional de Ecología y Cambio Climático. Available online: http://www2.inecc.gob.mx/sistemas/plaguicidas/pdf/Boro.pdf (accessed on 14 June 2025).
- Vargas, A.; Arias, F.; Serrano, E.; Arias, O.M. Toxicidad de Boro En Plantaciones de Banano (Musa AAA) En Costa Rica. Agron. Costarric. 2007, 31, 21–29. [Google Scholar] [CrossRef]
- Polat, H.; Vengosh, A.; Pankratov, I.; Polat, M. A New Methodology for Removal of Boron from Water by Coal and Fly Ash. Desalination 2004, 164, 173–188. [Google Scholar] [CrossRef]
- Campbell, C. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; University of Georgia: Athens, GA, USA, 2000. [Google Scholar]
- McCray, J.M.; Rice, R.W.; Ezenwa, I.V.; Lang, T.A.; Baucum, L. Sugarcane Plant Nutrient Diagnosis. In Florida Sugarcane Handbook; Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Tallahassee, FL, USA, 2006. [Google Scholar]
- Ortega de Pelligrini, A.E. Intoxicación Con Boro En Cultivos de Poroto de Cachi, Valles Calchaquíes, Salta. Argentina. Panor. Agropecu. 1992, 14, 18–19. [Google Scholar]
- Cervilla, L.M.; Blasco, B.; Rios, J.J.; Rosales, M.A.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M. Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. J. Bot. 2012, 2012, 726206. [Google Scholar] [CrossRef]
- Silva, D.H.; Lanzoni Rossi, A.; Enedi Boaretto, N.; De Lima Nogueira, T.M. Boron Affects the Growth and Ultrastructure of Castor Bean Plants; Scientia Agricola: Piracicaba, Brazil, 2008. [Google Scholar]
- Salazar García, S. Nutrición Del Aguacate: Principios y Aplicaciones. 2002. Available online: https://repository.agrosavia.co/bitstream/handle/20.500.12324/11591/45312_61864.pdf?sequ (accessed on 14 June 2025).
- Brown, P.H.; Hu, H. Boron Mobility and Consequent Management in Different Crops. Better. Crops 1998, 82, 28–31. [Google Scholar]
- Quintero, D.R. Efectos de La Aplicación de Elementos Menores En Caña de Azúcar En Suelos Del Valle Del Río Cauca; Centro de Investigación de la caña de azúcar en Colombia: Bogotá, Colombia, 2004. [Google Scholar]
- Blevins, D.G.; Lukaszewski, K.M. Boron in Plant Structure and Function. Annu. Rev. Plant Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef]
- Navarro, S.; Navarro, G. Química Agrícola: El Suelo y Los Elementos Químicos Esenciales Para La Vida Vegetal, 2nd ed.; Mundi-prensa: Barcelona, Spain, 2003. [Google Scholar]
- Ravelo Polo, B. Adsorción de Boro En Agua. Bachelor’s Thesis, Universidad Politécnica de Catalunya, Barcelona, Spain, 2012. [Google Scholar]
- Canadell Estrada, A. Comparación de La Adsorción Del Boro En Perlas de Alginato y Alginato/Alúmina. Master’s Thesis, Universidad Politécnica de Catalunya, Barcelona, Spain, 2010. Available online: https://hdl.handle.net/2099.1/10202 (accessed on 14 June 2025).
- Zhang, G.; Wang, A.; Zhuang, L.; Wang, X.; Song, Z.; Liang, R.; Ren, M.; Long, M.; Jia, X.; Li, Z.; et al. Enrichment of Boron Element in Follicular Fluid and Its Potential Effect on the Immune Function. Env. Pollut. 2022, 304, 119147. [Google Scholar] [CrossRef]
- Kan, F.; Kucukkurt, I. The Effects of Boron on Some Biochemical Parameters: A Review. J. Trace Elem. Med. Biol. 2023, 79, 127249. [Google Scholar] [CrossRef]
- Karabağ, F.; İnce, S.; Demirel, H.H. Boric Acid Is Associated with the Suppression of Apoptosis and Endoplasmic Reticulum Stress in Rat Model of Paracetamol-Induced Hepatotoxicity. J. Taibah Univ. Sci. 2023, 17, 2250565. [Google Scholar] [CrossRef]
- Ayers, R.; Westcot, D. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Roma, Italy, 1985. [Google Scholar]
- González Chávez, J.L.; Calderón Maldonado, D.; Romero Chávez, M.F.; Vega García, F. Reducción de Boro de Agua de Pozos Para Riego. In Proceedings of the I Congreso Nacional COMEII 2015, Jiutepec, Mexico, 23 November 2015; IMTA: Jiutepec, Mexico, 2015. [Google Scholar]
- Chica Toro, F.d.J.; Londoño Benítez, L.M.; Álvarez Herrera, M.I. La Zeolita En La Mitigación Ambiental. Rev. Lasallista Investig. 2006, 3, 30–34. [Google Scholar]
- González Rodríguez, V.K.; Perez Berrones, A.R.; Ramírez Medina, A. Adsorción de Boro Sobre Zeolitas Modificadas. Jóvenes Cienc. 2017, 3, 993–997. [Google Scholar]
- Núñez-Gómez, D.; Legua, P.; Lidón, V.; Conesa, A.; Martínez-Nicolás, J.J.; Melgarejo, P. Evaluation of Agricultural Soil-Improving Zeolite for Improving Irrigation Water Quality. Appl. Sci. 2024, 14, 418. [Google Scholar] [CrossRef]
- Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Legua, P.; Giménez-Valero, C.; Maciá-Vázquez, A.A.; Melgarejo, P. Comparative Evaluation of Boron Sorption Dynamics on Zeolites in Irrigation Waters: An Isothermal Modeling Approach. Molecules 2024, 29, 2545. [Google Scholar] [CrossRef]
- Escalante Rebolledo, A.; Pérez López, G.; Hidalgo Moreno, C.; López Collado, J.; Campo Alves, J.; Valtierra Pacheco, E.; Etchevers Barra, J.D. Biocarbón (Biochar) I: Naturaleza, Historia, Fabricación y Uso En El Suelo. Terra Latinoam. 2016, 34, 367–382. [Google Scholar]
- Martínez Chávez, C.C. Efectos de Enmiendas de Biochar Sobre El Desarrollo En Cucumis sativus L. Var. SMR-58. Master’s Thesis, Universidad de Guadalajara, Guadalajara, Mexico, 2015. [Google Scholar]
- Leyva Ramos, R. Importancia y Aplicaciones de La Adsorción En Fase Líquida. In Sólidos porosos. Preparación, caracterización y aplicaciones; Uniandes: Bogotá, Colombia, 2007; p. 197. [Google Scholar]
- Secretaría de Salud NOM-127-SSA1-2021; Agua Para Uso y Consumo Humano. Límites Permisibles de La Calidad Del Agua. Diario Oficial de la Federación: Mexico City, Mexico, 2021.
- SEMARNAT NOM-001-SEMARNAT-2021 Que Establece Los Límites Permisibles de Contaminantes En Las Descargas de Aguas Residuales En Cuerpos Receptores Propiedad de La Nación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0 (accessed on 14 June 2025).
- Secretaría de Desarrollo Urbano y Ecología ACUERDO Por El Que Se Establecen Los Criterios Ecológicos de Calidad Del Aguas CE-CCA-001/89; Diario Oficial de la Federación: Mexico City, Mexico, 1989.
- Liu, Y.; Chen, Y.; Zhou, Q. Effect of Initial PH Control on Enhanced Biological Phosphorus Removal from Wastewater Containing Acetic and Propionic Acids. Chemosphere 2007, 66, 123–129. [Google Scholar] [CrossRef]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Sawyer, C.N.; McCarty, P.L.; Parkin, G.F. Chemistry for Environmental Engineering; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Marcó, L.; Azario, R.; Metzler, C.; Garcia, M.C. La Turbidez Como Indicador Básico de Calidad de Aguas Potabilizadas a Partir de Fuentes Superficiales. Propuestas a Propósito Del Estudio Del Sistema de Potabilización y Distribución En La Ciudad de Concepción Del Uruguay (Entre Ríos, Argentina). Hig. Sanid. Ambient. 2004, 4, 72–82. [Google Scholar]
- Irie, M.; Kawachi, A.; Tarhouni, J.; Ghrabi, A.; Isoda, H. Sedimentation Trend and Behavior of Turbid Water in the Reservoir. J. Arid. Land. Stud. 2012, 22, 91–94. [Google Scholar]
- Goyenola, G. Transparencia, Color y Turbidez; red de monitoreo ambiental participativo de sistemas acuáticos; Food and Agriculture Organization of the United Nations: Roma, Italy, 2007. [Google Scholar]
- Atekwana, E.A.; Atekwana, E.A.; Rowe, R.S.; Werkema, D.D.; Legall, F.D. The Relationship of Total Dissolved Solids Measurements to Bulk Electrical Conductivity in an Aquifer Contaminated with Hydrocarbon. J. Appl. Geophy 2004, 56, 281–294. [Google Scholar] [CrossRef]
- Miller, K.J.; Rise, D.S.; Mcdonald, C. Ground-Water and Surface-Water Quality, Herbicide Transport, and Irrigation Practices: Greenfields Bench Aquifer, Teton County, Montana. JAWRA J. Am. Water Resour. Assoc. 2002, 41, 257–265. [Google Scholar] [CrossRef]
- Navinta Aquise, E.G.; Condori Sucari, W. Evaluación Físico Química de Los Parámetros Para Metales Pesados Boro (B) y Manganeso (Mn) Del Recurso Hídrico Para Consumo Humano En El Centro Poblado Mollendo–Islay; Universidad Nacional de San Agustín: Arequipa, Peru, 2016. [Google Scholar]
- Mancilla Villa, O.R.; Bautista Olivas, A.L.; Ortega Escobar, H.M.; Ramírez Ayala, C.; Reyes Ortigoza, A.L.; Flores Magdaleno, H.; González Eguiarte, D.R.; Guevara Gutiérrez, R.D. Contenido de Boro En El Agua Superficial de Puebla, Tlaxcala y Veracruz. Tecnol. Cienc. Del. Agua 2014, 5, 97–109. [Google Scholar]
- Vera, M.; Caballero, E.C.; Palencia, M. Estudio de La Capacidad de Retención de Boro Disponible En Suelos Mediante Membranas Funcionales Con Cadenas de Polioles. Temas Agrar. 2016, 19, 96–105. [Google Scholar] [CrossRef]
- Durán, S.; Sánchez, M.; Miranda, M.G.; Salazar, M.; Alvarez, C. Acumulación de Boro En Lenteja de Agua (Lemna gibba L.) y Efectos de Toxicidad. Available online: https://smbb.mx/congresos%20smbb/veracruz01/TRABAJOS/AREA_VI/CVI-5.pdf (accessed on 14 June 2025).
- Albarracín Franco, S.; de Viana, M. Aspidosperma Quebracho Blanco y Lolium Multiflorum: Dos Especies Capaces de Remediar Suelos Contaminados Con Boro. Av. En. Energías Renov. Medio Ambiente 2009, 13, 107–112. [Google Scholar]
- Romano Gómez, F.D.; Balderrama Flores, F. Extracción Solvente de Boro a Partir de Salmueras Evaporadas Del Salar de Uyuni Con 2-Etil-1-Hexanol y 2-Etil-1,3-Hexanodiol. Rev. Met. UTO 2013, 34, 13. [Google Scholar]
- Liao, L.; Chen, H.; He, C.; Dodbiba, G.; Fujita, T. Boron Removal in Aqueous Solutions Using Adsorption with Sugarcane Bagasse Biochar and Ammonia Nanobubbles. Materials 2024, 17, 4895. [Google Scholar] [CrossRef]
- De La Mora-Orozco, C.; Flores-López, H.E.; Durán-Chávez, A.A. Calidad Del Agua Del Embalse de La Presa La Vega y Su Impacto En Las Tierras Agrícolas Bajo Riego; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias: México DF, Mexico, 2013. [Google Scholar]
- Zhang, Z.; Yin, N.; Du, H.; Cai, X.; Cui, Y. The Fate of Arsenic Adsorbed on Iron Oxides in the Presence of Arsenite-Oxidizing Bacteria. Chemosphere 2016, 151, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Samadder, S.M. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. J. Envrion. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese Oxide-Modified Biochars: Preparation, Characterization, and Sorption of Arsenate and Lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, L.; Zhao, M.; Rong, H.; Xu, Y. The Environmental Characteristics and Applications of Biochar. Environ. Sci. Pollut. Res. 2018, 25, 21525–21534. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of Bamboo and Rice Straw Biochars on the Mobility and Redistribution of Heavy Metals (Cd, Cu, Pb and Zn) in Contaminated Soil. J. Env. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Alchouron, J.; Bursztyn Fuentes, A.L.; Musser, A.; Vega, A.S.; Mohan, D.; Pittman, C.U., Jr.; Mlsna, T.E.; Navarathna, C. Arsenic Removal from Household Drinking Water by Biochar and Biochar Composites: A Focus on Scale-Up. Sustain. Biochar Water Wastewater Treat. 2022, 2022, 277–320. [Google Scholar]
- Hernandez-Mena, L.E.; Pécora, A.A.B.; Beraldo, A.L. Slow Pyrolysis of Bamboo Biomass: Analysis of Biochar Properties. Chem. Eng. Trans. 2014, 37, 115–120. [Google Scholar] [CrossRef]
- Wibowo, E.; Sutsina; Rokhmat, M.; Murniati, R.; Khairurrijal; Abdullah, M. Utilization of Natural Zeolite as Sorbent Material for Seawater Desalination. Procedia Eng. 2017, 170, 8–13. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Academic Press, Ed.; Academic Press: Cambridge, MA, USA, 2013; ISBN 9780080970363. [Google Scholar]
- García Franco, R.; Hernández, M.Á.; Portillo Reyes, R.; Petranovskii, V.; Rubio, E.; Quiroz Estrada, K.F. Adsorption of CO2, H2 and CH4 on Narrow Pore Natural Zeolites. Rev. Int. Contam. Ambient. 2018, 34, 685–696. [Google Scholar] [CrossRef]
Tolerance | Mg B/L | Examples of Crops |
---|---|---|
Very sensitive | <0.5 | Blackberry and lemon |
Sensitive | 0.5 to 0.75 | Peach, cherry, plum, bean, onion, garlic, sweet potato, wheat, barley, sunflower, strawberry, artichoke, avocado, grapefruit, orange, peanut, sesame, sweet potato, walnut, grape and apricot. |
Moderately sensitive | 1 to 2 | Red pepper, pea, carrot, potato, cucumber, broccoli, radish, and lettuce. |
Moderately tolerant | 2 to 4 | Cabbage, oats, cauliflower, tobacco, eggplant, melon and mustard. |
Tolerant | 4 to 6 | Parsley, tomato, alfalfa and sorghum. |
Very tolerant | 6 to 15 | Celery, cotton, asparagus and sweet corn. |
Study | Material/Method | Boron Concentration | Removal Efficiency | Notes |
---|---|---|---|---|
Aquise & Sucari [51] | Peruvian standard | Not specified | Not reported | Did not meet Peruvian standards (2.4 mg/L) |
Ravelo Polo [26] | Chitosan-nickel beads | 5–50 ppm | 90% | Did not meet European standards (1 ppm) |
Canadell [27] | Alginate and alginate-alumina beads | 5 and 25 mg/L | >50% | Best results: wet beads at pH 11 |
Canadell [27] | Continuous column with wet alginate beads | Not specified | 13.30% | Not effective in continuous system |
Vera et al. [53] | Interpenetrating polymeric network membranes | Varied by soil type | 56% | Maximum retention: 0.0023–0.51 mg B/g membrane |
Albarracín-Franco & de Viana [55] | Phytoremediation (aspidosperma quebracho blanco and lolium multiflorum) | Up to 50 ppm | 68% | Viable for soil remediation |
Romano Gómez & Balderrama Flores [56] | Alcohols (2-ethyl-1,3-hexanediol) | Not specified | ~90% | Most effective for lithium carbonate production |
González, Pérez & Medina [34] | Faujasite zeolite | Not specified | >83% | - |
González, Pérez & Medina [34] | Nickel-modified zeolite | Not specified | 72–89% | - |
Liao et al. [54] | Sugarcane bagasse biochar with ammonia nanobubbles | Not specified | 36 mg B/g biochar | At room temperature, Langmuir isotherm |
Parameter | Units | |
---|---|---|
Electric Conductivity | dS m−1 | 1.25 |
pH | - | 8.73 |
CO3 | me/L | 1.14 |
HCO3 | me/L | 0.81 |
Cl- | me/L | 2.44 |
SO4 | me/L | 6.98 |
NO3 | me/L | 0.85 |
PO4 | me/L | 0.04 |
Ca | me/L | 1.55 |
Mg | me/L | 2.17 |
Na | me/L | 0.70 |
K | me/L | 8.39 |
Fe | ppm | 0.04 |
Cu | ppm | 0.01 |
Mn | ppm | 0.20 |
Zn | ppm | 0.01 |
B | ppm | 0.49 |
Humidity | % | 2.46 |
Density | g/cm3 | 1.64 |
Bulk density | g/cm3 | 0.20 |
Total porous space | % | 87.57 |
Aeration capacity | % | 36.70 |
Water easily available | % | 31.86 |
Reserve water | % | 2.10 |
Total available water | % | 33.96 |
Retention water capacity | mL/L | 508.73 |
Water hardly available | % | 16.91 |
Mineral Species | Formula | Percentage (%) |
---|---|---|
Cristobalite | SiO2 | 64.65 |
Hematita | Fe2O3 | 2.2817 |
Al2 O3 | 11.9201 | |
CaO | 2.0721 | |
MgO | 0.7832 | |
Na2O | 0.7429 | |
K2O | 5.0577 | |
Si/Al | 5.4243 | |
PxC | 12.4681 |
Parameter | Units | Method/Equipment |
---|---|---|
pH | --- | Electrode/MW 801 Milwaukee |
Electrical Conductivity | dS/cm | Electrode/MW 801 Milwaukee |
Turbidity | UTN | AMCO-AEPA-1/Hanna Instrument HI93703 |
Color | PtCo | HACH 120/DR2800 |
Total Dissolved Solids | mg/L | Electrode/MW 801 Milwaukee |
Boron | ppm | Azomethine-H/Atomic absorption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Mora Orozco, C.; Cano, L.; Nápoles Armenta, J.; García Gómez, C.; García Velasco, J.; De La Mora García, D.Y.; Pérez Valencia, L.I.; Martínez Orozco, E. Boron Removal in the Aqueous Phase Using Agave Bagasse Biochar and Zeolite Packaging. Processes 2025, 13, 3114. https://doi.org/10.3390/pr13103114
De La Mora Orozco C, Cano L, Nápoles Armenta J, García Gómez C, García Velasco J, De La Mora García DY, Pérez Valencia LI, Martínez Orozco E. Boron Removal in the Aqueous Phase Using Agave Bagasse Biochar and Zeolite Packaging. Processes. 2025; 13(10):3114. https://doi.org/10.3390/pr13103114
Chicago/Turabian StyleDe La Mora Orozco, Celia, Liset Cano, Juan Nápoles Armenta, Celestino García Gómez, Javier García Velasco, Diana Yaneli De La Mora García, Laura Izascum Pérez Valencia, and Edgardo Martínez Orozco. 2025. "Boron Removal in the Aqueous Phase Using Agave Bagasse Biochar and Zeolite Packaging" Processes 13, no. 10: 3114. https://doi.org/10.3390/pr13103114
APA StyleDe La Mora Orozco, C., Cano, L., Nápoles Armenta, J., García Gómez, C., García Velasco, J., De La Mora García, D. Y., Pérez Valencia, L. I., & Martínez Orozco, E. (2025). Boron Removal in the Aqueous Phase Using Agave Bagasse Biochar and Zeolite Packaging. Processes, 13(10), 3114. https://doi.org/10.3390/pr13103114