Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft
Abstract
1. Introduction
2. Materials and Methods
2.1. IAR-99 HAWK Aircraft Descriptions
2.2. FEM Structural Model in Clean Configuration
2.3. Aerodynamic Modeling (DLM)
2.3.1. Brief Methodological Frame
2.3.2. Application to the IAR-99 in Clean Configuration
2.4. Representative External Store Configurations-FEM
2.5. Application to the IAR-99 in A–D Configuration
3. Results
3.1. Result for Clean Aircraft Configuration
3.1.1. Modal Characteristics (Clean FEM)
3.1.2. Flutter Analysis
3.2. Results for Four New Configurations
3.2.1. Modal Characteristics (A–D Configurations FEM)
3.2.2. Flutter Analysis for A–D Configurations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bisplingboff, R.L.; Ashley, H.; Halfman, R.L. Aeroelasticity; Addison-Wesley Publishing Company: Cambridge, MA, USA, 1955. [Google Scholar]
- Čečrdle, J. 1—Introduction to aircraft aeroelasticity and whirl flutter. In Whirl Flutter of Turboprop Aircraft Structures; Woodhead Publishing: Sawston, UK, 2015; pp. 1–12. [Google Scholar] [CrossRef]
- Available online: https://www.intertekinform.com/en-us/standards/mil-a-8870-revision-c-1993-690098_saig_mil_mil_1591500/ (accessed on 1 July 2025).
- Available online: https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-23-normal-utility-aerobatic-and-commuter-aeroplanes (accessed on 1 July 2025).
- Moosavi, M.R.; Oskouei, A.R.N.; Khelil, A. Flutter of subsonic wing. Thin-Walled Struct. 2005, 43, 617–627. [Google Scholar] [CrossRef]
- Voss, G.; Schaefer, D.; Vidy, C. Investigation on flutter stability of the DLR-F19/SACCON configuration. Aerosp. Sci. Technol. 2019, 93, 105320. [Google Scholar] [CrossRef]
- Mozaffari-Jovin, S.; Firouz-Abadi, R.D.; Roshanian, J. Flutter of wings involving a locally distributed flexible control surface. J. Sound Vib. 2015, 357, 377–408. [Google Scholar] [CrossRef]
- Silva, G.C.; Donadon, M.V.; Silvestre, F.J. Experimental and numerical investigations on the nonlinear aeroelastic behavior of high aspect-ratio wings for different chord-wise store positions under stall and follower aerodynamic load models. Int. J. Non-Linear Mech. 2021, 131, 103685. [Google Scholar] [CrossRef]
- Pike, E.C. AGARD Report No. 578 Manual on Aeroelasticity; Technical Editing and Reproduction Ltd.: London, UK, 1971. [Google Scholar]
- Peters, N.; Wissink, A.; Ekaterinaris, J. Machine learning-based surrogate modeling approaches for fixed-wing store separation. Aerosp. Sci. Technol. 2023, 133, 108150. [Google Scholar] [CrossRef]
- Cakmak, E.; Kurnaz, M.; Kilic, D.; Nikbay, M. CFD-Based Techniques for Flutter Prediction Through the Generation of Generalized Aerodynamic Forces. In Proceedings of the AIAA 2025-3294 Session: Applied Aeroelasticity and Fluid-Structure Interaction, Las Vegas, NV, USA, 16 July 2025. [Google Scholar] [CrossRef]
- Ang, E.H.W.; Ng, B.F. Stability Analysis of Body-Freedom Flutter in Flying Wing Unmanned Aerial Vehicles. AIAA J. 2025, 1–9. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, L.; Ren, S.; Hou, L.; Li, Z.; Saeed, N.A. Flutter Analysis of a 2.5D C/SiC Composite Blade Considering Wake Excitation. J. Vib. Eng. Technol. 2025, 13, 367. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Shin, B.; Jo, Y. A Study on the Flight Safety Analysis of Military Aircraft External Stores. J. Korean Mil. Sci. Technol. Soc. 2023, 26, 83–90. [Google Scholar] [CrossRef]
- Yuet, S.K.; Imisi-Oluwa, A.; Mat, S. Experimental Investigation of a Generic Light Aircraft Model with Dual External Stores. In Proceedings of the 2nd International Seminar on Aeronautics and Energy (ISAE 2022), Virtual, 17 September 2022; Lecture Notes in Mechanical Engineering; Nik Mohd., N.A.R., Mat, S., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Gade, P.V.N.; Inman, D.J. ∞ Controller Design for Wing/Store Flutter Suppression. In Proceedings of the ASME 1996 International Mechanical Engineering Congress and Exposition. Active Control of Vibration and Noise, Atlanta, GA, USA, 17–22 November 1996; ASME: New York, NY, USA; pp. 91–99. [Google Scholar] [CrossRef]
- Abou-Kebeh, S.; Gil-Pita, R.; Rosa-Zurera, M. Application of Deep Learning to Identify Flutter Flight Testing Signals Parameters and Analysis of Real F-18 Flutter Flight Test Data. Aerospace 2025, 12, 34. [Google Scholar] [CrossRef]
- Kwon, J.; Yoo, J.H.; Lee, I. Effects of Structural Damage and External Stores on Transonic Flutter Stability. Int. J. Aeronaut. Space Sci. 2018, 19, 636–644. [Google Scholar] [CrossRef]
- Kang, L.H.; Lee, S.J.; Lee, I.; Han, J.H. Flutter Characteristics and Active Vibration Control of Aircraft Wing with External Store. J. KIMS Technol. 2007, 10, 73–80. [Google Scholar]
- Hoq, K.M.T.; Talal, A.; Mat, S.; Ramli, Y. Effect of External Store on a Generic Subsonic Fighter Aircraft. J. Aeronaut. Astronaut. Aviat. 2024, 56, 1069–1080. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y. Flutter stability analysis of aeroelastic systems with consideration of hybrid uncertain parameters. Mech. Syst. Signal Process. 2023, 185, 109782. [Google Scholar] [CrossRef]
- Vindigni, C.R.; Mantegna, G.; Orlando, C.; Alaimo, A.; Berci, M. A refined aeroelastic beam finite element for the stability analysis of flexible subsonic wings. Comput. Struct. 2025, 307, 107618. [Google Scholar] [CrossRef]
- Gern, F.H.; Librescu, L. Effects of externally mounted stores on aeroelasticity of advanced swept cantilevered aircraft wings. Aerosp. Sci. Technol. 1998, 2, 321–333. [Google Scholar] [CrossRef]
- Fazelzadeh, S.A.; Ghasemi, A.H.; Mazidi, A. Aeroelastic Analysis of Unrestrained Aircraft Wing with External Stores Under Roll Maneuver. Int. J. Acoust. Vib. 2016, 21, 327333. [Google Scholar] [CrossRef]
- Byun, K.-H.; Jun, S.-M. Flutter Analysis of F-16 Aircraft Utilizing Test Modal Data. In Proceedings of the 25th International Congress of the Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006. [Google Scholar]
- Amoozgar, M.; Shahverdi, H. Investigation of adding fins to external stores for improving the flutter characteristics of a wing/store configuration. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 230, 1507–1517. [Google Scholar] [CrossRef]
- Lei, Y.; Ye, Z. The interference aerodynamics caused by the wing elasticity during store separation. Acta Astronaut. 2016, 121, 116–129. [Google Scholar] [CrossRef]
- Jonsson, E.; Riso, C.; Lupp, C.A.; Cesnik, C.E.S.; Martins, J.R.R.A.; Epureanu, B.I. Flutter and post-flutter constraints in aircraft design optimization. Prog. Aerosp. Sci. 2019, 109, 100537. [Google Scholar] [CrossRef]
- Available online: https://www.incas.ro/iar-99-and-successors-program/ (accessed on 1 July 2025).
- Stefanescu, I. Utilization of simple and double control subsonic aircraft for advanced combat training of the military pilots. INCAS Bull. 2012, 4, 103–114. [Google Scholar] [CrossRef]
- Catana, R.M.; Badea, G.P. Experimental Analysis on the Operating Line of Two Gas Turbine Engines by Testing with Different Exhaust Nozzle Geometries. Energies 2023, 16, 5627. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, X. Numerical Stabilization for Flutter Analysis Procedure. Aerospace 2023, 10, 302. [Google Scholar] [CrossRef]
- Böhnisch, N.; Braun, C.; Marzocca, P.; Muscarello, V. Impact of Aerodynamic Interactions on Aeroelastic Stability of Wing-Propeller Systems. Appl. Sci. 2024, 14, 8709. [Google Scholar] [CrossRef]
- Yu, Q.; Damodaran, M.; Khoo, B.C. Predicting wing–pylon–nacelle configuration flutter based on finite element and aerodynamic panel methods. Adv. Aerodyn. 2023, 5, 52. [Google Scholar] [CrossRef]
- Yuan, W. Rimple Sandhu and Dominique Poirel, Fully Coupled Aeroelastic Analyses of Wing Flutter towards Application to Complex Aircraft Configurations. J. Aerosp. Eng. 2020, 34, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladimirescu, T.; Fuiorea, I.; Vladimirescu, T., Jr.; Cican, G. Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft. Processes 2025, 13, 3065. https://doi.org/10.3390/pr13103065
Vladimirescu T, Fuiorea I, Vladimirescu T Jr., Cican G. Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft. Processes. 2025; 13(10):3065. https://doi.org/10.3390/pr13103065
Chicago/Turabian StyleVladimirescu, Tudor, Ion Fuiorea, Tudor Vladimirescu, Jr., and Grigore Cican. 2025. "Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft" Processes 13, no. 10: 3065. https://doi.org/10.3390/pr13103065
APA StyleVladimirescu, T., Fuiorea, I., Vladimirescu, T., Jr., & Cican, G. (2025). Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft. Processes, 13(10), 3065. https://doi.org/10.3390/pr13103065