Possibility of Using Alkali-Activated Phosphogypsum from the Production of Orthophosphoric Acid for the Building Materials—A Review
Abstract
:1. Introduction
2. Pozzolanic Materials
3. Phosphogypsum as a Way to Increase the Mineral Fraction
4. Alkaline Activation
5. Waste or Component
6. Conclusions
- There are emerging trends in construction, that use waste, which properties favor the desired characteristics of building materials.
- Researches are carried out on the use of alkaline substances as activators for the formation of N-A-S-H and C-A-S-H aluminosilicate forms combines gel and zeolite forms.
- The addition of phosphogypsum and spent caustic affects the formation of gel forms, which results in an increased effect on the setting.
- Because of the formation of tetrahedral forms of aluminosilicates, it is possible to immobilize heavy metals and develop an absorbent surface by creating a zeolitic fraction for the immobilization of organic substances.
- The material binding stage begins at room temperature, so it is possible to reduce the energy consumption needed, e.g., for firing the material, due to the lack of such necessity.
- Further researches are needed to determine the leaches of organic and inorganic substances from the material, its radioactivity and the selection of the optimal composition in order to minimize the negative characteristics of the material.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wire, B. Global Concrete Block and Brick Manufacturing: Global Strategic Business Report; Global Industry Analysts, Inc.: San Jose, CA, USA, 2024. [Google Scholar]
- Available online: https://www.awbud.pl/ile-wazy-cegla-czy-ceglowka-wazy-kilogram/#:~:text=Standardowa%20ceg%C5%82a%20ceramiczna%20mo%C5%BCe%20wa%C5%BCy%C4%87%20od%202%20do,%C5%BCe%20ceg%C5%82a%20wa%C5%BCy%20zazwyczaj%20wi%C4%99cej%20ni%C5%BC%20jeden%20kilogram (accessed on 7 March 2024).
- Murmu, A.L.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Knapik, K. Wybrane właściwości fluidalnego popiołu lotnego przeznaczonego do wzmacniania podłoża gruntowego. Inżynieria Morska I Geotech. 2015, 3, 413–416. [Google Scholar]
- Pytel, Z. Influence of the thermal treatment parameters of clay raw materials on it pozzolanic activity. Probl. Nauk. -Badaw. Budownictwa 2001, 1, 387–396. [Google Scholar]
- Dodson, V.H. Pozzolans and the Pozzolanic Reaction, Concrete Admixtures; Springer: Boston, MA, USA, 1990; pp. 159–201. [Google Scholar]
- Tkaczewska, E. Metody badań aktywności pucolanowej dodatków mineralnych. Mater. Ceram. 2011, 63, 536–541. [Google Scholar]
- Dron, R. Bulletin de Liaison Laboratoires des Ponts et Chaussees; CFGI: Boston, MA, USA, 1978; p. 66. [Google Scholar]
- Kołakowski, J.; Szymański, E.; Wilczyńska, H. Prace Katedry Chemii i Technologii Materiałów Budowlanych; Politechnika Warszawska: Warsaw, Poland, 1996; pp. 1960–1970. [Google Scholar]
- Nayak, D.K.; Abhilash, P.P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Weng, C.H.; Lin, D.F.; Chiang, P.C. Utilization of sludge as brick material. Adv. Environ. Res. 2003, 7, 679–685. [Google Scholar] [CrossRef]
- Bubalo, A.; Vouk, D.; Curkovic, L.; Rogosic, M.; Nakić, D.; Cheeseman, C. Influence of combustion temperature on the performance of sewage sludge ash as a supplementary material in manufacturing bricks. Constr. Build. Mater. 2023, 404, 133126. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Bertelsen, I.; Jensen, P.E.; Kirkelund, G.M. Sewage sludge ash as resource for phosphorous and material for clay brick manufacturing. Constr. Build. Mater. 2020, 249, 118684. [Google Scholar] [CrossRef]
- Siemieniuk, J.; Szatyłowicz, E. Zmniejszenie emisji CO2 w procesie produkcji cementu. Civ. Environ. Eng. 2018, 9, 81–87. [Google Scholar]
- Okuno, N.; Takahashi, S. Full scale application of manufacturing bricks from sewage. Water Sci. Technol. 1997, 36, 243–250. [Google Scholar] [CrossRef]
- Zhang, Z.; Wong, Y.C.; Arulrajah, A.; Horpibulsuk, S. A review of studies on bricks using alternative materials and approaches. Constr. Build. Mater. 2018, 188, 1101–1118. [Google Scholar] [CrossRef]
- Seco, A.; Omer, J.; Marcelino, S.; Espuelas, S.; Prieto, E. Sustainable unfired bricks manufacturing from construction and demolition wastes. Constr. Build. Mater. 2018, 167, 154–165. [Google Scholar] [CrossRef]
- Eurostat Database. Number and Capacity of Recovery and Disposal Facilities by NUTS 2 Regions. Available online: https://data.europa.eu/data/datasets/pc4xatxpijivikn3tgf1rw?locale=en (accessed on 20 May 2024).
- Zhang, W.; Jin, Y.; Na, S.; Zhao, L.; Su, F.; Zhu, J. Improving mechanical properties of hemihydrate phosphogypsum via alkali-activated mineral admixtures. J. Clean. Prod. 2024, 454, 142234. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Zuaiter, H.A.; Najm, O. Shrinkage characteristics of sustainable mortar and concrete with alkali-activated slag and fly ash Binders: A focused review. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Robert, P.M.; Petrou, M.F.; Nicolaides, D. Mechanical behavior of construction and demolition waste-based alkali activated materials exposed to fire conditions. Constr. Build. Mater. 2024, 415, 134994. [Google Scholar] [CrossRef]
- Decision-2000/532-EN-EUR-Lex (europa.eu). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000D0532 (accessed on 20 May 2024).
- Tayibi, H.; Mohamed, C. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef]
- Abril, J.; Garcia-Tenorio, R.; Enamorado, S.; Hurtado, M.D.; Andreu, L.; Delgado, A. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226 Ra, 238 U and Cd contents in soils and tomato fruit. Sci. Total Environ. 2008, 403, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.-G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.-L.; et al. Phosphogypsum circular economy considerations: A critical review from more than 65 storage sites worldwide. J. Clean. Prod. 2023, 414, 137561. [Google Scholar] [CrossRef]
- El Aloui, E. Phosphogypsum (PG) is a waste or by product, ICCME22, November 2022. Available online: https://www.researchgate.net/publication/365704647_Phosphogypsum_PG_is_a_waste_or_by_product#:~:text=Phosphogypsum%20%28PG%29%20is%20a%20by-product%20resulting%20from%20the,production%20rate%20exceeds%2010%20million%20tons%20per%20year (accessed on 20 May 2024).
- Silva, L.F.O.; Oliviera, M.L.S.; Crissien, T.J.; Santosh, M.; Bolivar, J.; Shao, L.; Dotto, G.L.; Gasparotto, J.; Schindler, M. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 2022, 286, 131513. [Google Scholar] [CrossRef] [PubMed]
- Pliaka, M.; Gaidjis, G. Potential uses of phosphogypsum: A review. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. 2022, 57, 746–763. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.L. Exploring the potential reuse of phosphogypsum: A waste or a resource? Sci. Total Environ. 2024, 908, 168196. [Google Scholar] [CrossRef]
- Wang, C.-Q.; Wang, Z.-Y.; Huang, D.-M.; Huang, Q.-C.; Chen, Y.; Zhang, H.; Shui, Z.-H. Recovery and recycling core of phosphogypsum: Characteristic hazardous elements risk assessment and analysis. Process Saf. Environ. Prot. 2023, 170, 738–756. [Google Scholar] [CrossRef]
- Li, C.; Dong, Y.; Yi, Y.; Tian, J.; Xuan, C.; Wang, Y.; Wen, J.; Cao, J. Effects of phosphogypsum on enzyme activity and microbial community in acid soil. Sci. Rep. 2023, 13, 6189. [Google Scholar] [CrossRef] [PubMed]
- Chernysh, Y.; Yakhnenko, E.; Chubur, V.; Roubik, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. [Google Scholar] [CrossRef]
- Awad, S.; Essam, M.; Boukhriss, A.; Kamar, M.; Midani, M. Properties, Purification and Applications of Phosphogypsum: A Comprehensive Review Towards Circular Economy. Mater. Circ. Econ. 2024, 6, 9. [Google Scholar] [CrossRef]
- Parliamentary Question|Plan to Cover over Phosphogypsum Ponds in Huelva|E-001616/2023| uropean Parliament (europa.eu). Available online: https://www.europarl.europa.eu/doceo/document/E-9-2023-001616_EN.html (accessed on 20 May 2024).
- Staub, M.; Gourc, J.P.; Simonin, R. Influence of landfill cap cover characteristics on the mitigation of GHG emissions. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil, 1 February 2010. [Google Scholar]
- Błaszczyński, T. Wpływ uziarnienia popiołów lotnych na wytrzymałość spoiw geopolimerowych. Mater. Bud. 2017, 1, 96–99. [Google Scholar] [CrossRef]
- Błaszczyński, T. Właściwości spoiw geopolimerowych na bazie lotnych popiołów wapniowych. Builder 2021, 288, 100–103. [Google Scholar] [CrossRef]
- Available online: www.budownictwo.org/artykuly/szczegoly/45058_co-to-sa-pucolany (accessed on 7 March 2024).
- Radwan, M.M.; Nagi, S.M. Hydration behavior and formation of strätlingite compound (C2ASH8) in a bio-cement based on tri-calcium silicate and mono-calcium aluminate for dental applications: Influence of curing medium. Bull. Natl. Res. Cent. 2022, 46, 180. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.; Ho, H.M. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement. Materials 2006, 26, 970–9783. [Google Scholar] [CrossRef]
- Munoz, P.S.P.; Characa, M.S.; Davila, G.C.M.; Díaz, R.I. Use of fly ash in the production of geopolymers: A literature review. Innov. Infrastruct. Solut. 2022, 7, 236. [Google Scholar]
- Shaji, N.; Holmes, N.; Tyrer, M. Early Age Assessment of a New Course of Irish Fly Ash as a Cement Replacement. Appl. Sci. 2024, 14, 4128. [Google Scholar] [CrossRef]
- EN 450-1:2012; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- Bubalo, A.; Vouk, D.; Stirmer, N.; Nad, K. Use of Sewage Sludge Ash in the Production of Innovative Bricks—An Example of a Circular Economy. Sustainability 2021, 13, 9330. [Google Scholar] [CrossRef]
- Thomas, M. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Tokyo, Japan, 2007. [Google Scholar]
- Bouaissi, A.; Li, L.; Mohd, M.A.B.A.; Romisuhani, A. Fly Ash as a Cementitious Material for Concrete. Zero-Energy Buildings—New Approaches and Technologies; Intech Open: London, UK, 2020. [Google Scholar]
- Paya, J.; Monzo, J.; Borrachero, M.V.; Soriano, L. Sewage Sludge Ash, New Trends in Eco-efficient and Recycled Concrete. Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–152. [Google Scholar]
- Sah, P.K.; Sah, B.K.; Kumar, S.S. Sustainable utilization of sewage sludge ash in stabilizing subgrade soil: An appraisal. Environment. Dev. Sustain. 2024, 26. [Google Scholar] [CrossRef]
- Murali, G.; Azab, M. Recent research in utilization of phosphogypsum as building materials: Review. J. Mater. Res. Technol. 2023, 25, 960–987. [Google Scholar] [CrossRef]
- Turkel, S.; Aksin, E. A comparative study on the use of fly ash and phosphogypsum in the brick production. Sadhana 2012, 37, 595–607. [Google Scholar] [CrossRef]
- Bouchhima, L.; Rouis, M.J.; Choura, M. Engineering properties of wade sand-lime- cement-phosphogypsum building brick grade MW. Int. J. Eng. Adv. Technol. 2013, 2, 43–49. [Google Scholar]
- Vaičiukynienė-Palubinskaitė, D.; Nizeviciene, D.; Kantautas, A.; Bocullo, V.; Kielė, A. Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum. Appl. Sci. 2020, 10, 5190. [Google Scholar] [CrossRef]
- Tian, X.; Rao, F.; Leon-Patino, C.A.; Song, S. Co-disposal of MSWI fly ash and spent caustic through alkaline-activation consolidation. Cem. Concr. Compos. 2021, 116, 103824. [Google Scholar] [CrossRef]
- Zhang, R.; Wan, Q.; Zhang, Y.; Zhang, X. Synthesis and characterization of fly ash-based geopolymers activated with spent caustic. Gels 2022, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Borno, I.B.; Khan, R.I.; Siddique, S.; Haque, M.I.; Tahsin, A. Mimicking the cementation mechanism of ancient Roman seawater concrete using calcined clays. Appl. Clay Sci. 2022, 230, 106696. [Google Scholar] [CrossRef]
- MacFarlane, J.; Vanorio, T.; Monteiro, P. Multi-scale imaging, strength and permeability measurements: Understanding the durability of Roman marine concrete. Constr. Build. Mater. 2021, 272, 121812. [Google Scholar] [CrossRef]
- Pinter, F.; Vidovszky, I.; Weber, J.; Bayer, K. Mineralogical and microstructural characteristics of historic Roman cement renders from Budapest, Hungary. J. Cult. Herit. 2014, 15, 219–226. [Google Scholar] [CrossRef]
- Allard, C. Self-healing Roman concrete. Nat. Rev. Mater. 2023, 8, 80. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernandez-Jimenez, A.; Macphee, D.E. Compability studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Walkley, B.; San Nicolas, R.; Sani, M.-A.; Rees, G.J.; Hanna, J.V.; van Deventer, J.S.; Provis, J.L. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 2016, 89, 120–135. [Google Scholar] [CrossRef]
- Fang, K.; Xu, L.; Yang, M.; Chen, Q. One-step wet-process phosphoric acid by-product CaSO4 and its purification. Sep. Purif. Technol. 2023, 309, 123048. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/1289304/global-phosphoric-acid-production-capacity/ (accessed on 20 April 2024).
- Dorozhkin, S.V. Fundamentals of the Wet-Process Phosphoric Acid Production. 1. Kinetics and Mechanism of the Phosphate Rock Dissolution. Ind. Eng. Chem. Res. 1996, 35, 4328–4335. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, G.; Long, Y.; Liu, Z.; Tao, C.; Liu, R. Advanced oxidation processes for wet-process phosphoric acid: Enhanced phosphorus recovery and removal of organic matters. Hydrometallurgy 2022, 210, 105842. [Google Scholar] [CrossRef]
- Podraza, Z.; Krupa-Żuczek, K.; Wzorek, Z. Technologie Otrzymywania Kwasu Fosforowego (V), Chemia Czasopismo Techniczne; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2011. [Google Scholar]
- Biegaska, J.; Pitkowska, E.; Pala, A. Zagospodarowanie fosfogipsu na cele nieprzemysłowe. In Innowacyjne i Przyjazne dla Środowiska Techniki i Technologie Przeróbki Surowców Mineralnych; Bezpieczeństwo–Jakość–Efektywność; Instytut Techniki Górniczej KOMAG: Gliwice, Poland, 2014; pp. 107–117. [Google Scholar]
- Garrido, F.; Illera, V.; Garcia-Gonzales, M.T. Effect of the addition of gypsum- and lime- rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl. Geochem. 2005, 20, 397–408. [Google Scholar] [CrossRef]
- Sahu, S.K.; Ajmal, P.Y.; Bhangare, R.C.; Tiwari, M.; Pandit, G.G. Natural radioactivity assessment of a phosphate fertilizer plant area. J. Radiat. Res. Appl. Sci. 2014, 7, 123–128. [Google Scholar] [CrossRef]
- Hassoune, H.; Lachehab, A.; Hajjaji, K.; Mertah, O.; Kherbeche, A. Dynamic of Heavy Metals and Environmental Impact of Waste Phosphogypsum, Fate and Transport of Subsurface Pollutants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 57–77. [Google Scholar]
- Sadowski, R.F.; Kosieradzka-Federczyk, A. Paradoksy ekologiczne. In Odpady Miarą Sukcesu i Porażki Cywilizowanej Ludzkości; Krajowa Szkoła Administracji Publicznej: Warszawa, Poland, 2020. [Google Scholar]
- Afifi, E.M.; Hilal, M.A.; El-Reefy, S.A. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J. Environ. Radioact. 2009, 100, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Deng, Z. Research hotspots and trends of comprehensive utilization of phosphogypsum: Bibliometric analysis. J. Environ. Radioact. 2021, 242, 106778. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, P.M.; Dudas, M.J.; Samek, R.A. Environmental impacts of phosphogypsum. Sci. Total Environ. 1994, 149, 168196. [Google Scholar] [CrossRef]
- Afifi, E.M.; Hilal, M.A.; Aly, H.F. Evaluation of U, Th, K and emanated radon in some NORM and TENORM samples. Radiat. Meas. 2006, 41, 627–633. [Google Scholar] [CrossRef]
- Podraza, Z.; Krupa-Żuczek, K.; Wzorek, Z. Ekstrakcyjna Metoda Otrzymywania Kwasu Fosforowego(V) z Odpadów Kostnych z Przemysłu Mięsnego, Chemia Czasopismo Techniczne; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2011. [Google Scholar]
- Donigiewicz, F.; Wadowski, M.; Skiba, T.; Hoffmann, K.; Hoffmann, J. Badania nad natężeniem ekstrakcyjnego kwasu fosforowego na potrzeby otrzymywania fosforanów paszowych. Proc. ECOpole 2010, 4, 121–126. [Google Scholar]
- Bojanowicz-Bablok, A. Challenges in phosphoric acid production. Possibilities Limit. Waste Manag. Przemysł Chem. 2013, 92, 450–457. [Google Scholar]
- Gobbitt, J.M. Yara Hemihydrate (HH) and Hemidihydrate (HDH) Processes for Phosphoric Acid Production. Procedia Eng. 2012, 46, 143–153. [Google Scholar] [CrossRef]
- Bouchkira, I.; Benjelloun, S.; Khamar, L.; Latifi, A. Thermodynamic modeling and parameter estimability analysis of a wet phosphoric acid process with impurities. Fluid Phase Equilibria 2022, 564, 113594. [Google Scholar] [CrossRef]
- Soboleva, I.V.; Lyashenko, S.E. Studying the Hemihydrate Stage of the Process of Preparation of Extractive Phosphoric Acid by the Dihydrate–Hemihydrate Method from Low-Grade Phosphorites. Theor. Found. Chem. Eng. 2023, 57, 704–708. [Google Scholar] [CrossRef]
- Kępiński, J. Technologia Chemiczna Nieorganiczna; PWN: Warszawa, Pland, 1964. [Google Scholar]
- Praca, Z. Technologia Chemiczna Nieorganiczna; Wydawnictwa Naukowo-Techniczne: Warszawa, Pland, 1965. [Google Scholar]
- Production of Phosphoric Acid, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry; European Fertilizer Manufacturers Association: Brussels, Belgium, 2000. Booklet No. 4 of 8. Available online: https://fertilizerseurope.com/wp-content/uploads/2019/08/Booklet_4_final.pdf (accessed on 20 May 2024).
- Calderon-Morales, B.; Garcia-Martinez, A.; Pineda, P.; Garcia-Tenorio, R. Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction. J. Build. Eng. 2021, 44, 102506. [Google Scholar] [CrossRef]
- Liu, X.; Wu, F.; Qu, G.; Jin, C.; Liu, Y.; Kuang, L.; Li, H.; Chen, X.; Wang, Z.; Cheng, Y. Application prospect of advanced oxidation technology in wet process phosphoric acid production. J. Environ. Chem. Eng. 2022, 10, 113594. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Available online: https://www.watertechonline.com/wastewater/article/15550510/treating-refinery-spent-caustic-with-electro-oxidation (accessed on 20 April 2024).
- Niknejad, A.S.; Bazgir, S.; Ardjmand, M.; Shirazi, M.M.A. Spent caustic wastewater treatment using direct contact membrane distillation with electro blown styrene-acrylonitrile membrane. Int. J. Environ. Sci. Technol. 2020, 18, 2283–2294. [Google Scholar] [CrossRef]
- Gholami, A.; Mousavi, S.B.; Heris, S.Z.; Mohammadpourfard, M. Highly efficient treatment of petrochemical spent caustic effluent via electro-Fenton process for COD and TOC removal: Optimization and experimental. Biomass Convers. Biorefinery 2023, 14, 17481–17497. [Google Scholar] [CrossRef]
- Ahmadi, M.; Seyedin, S.H.; Sayedin, S.V. Modern Spent-caustic Wastewater Treatment Simulation by Aspen Plus in Electrolytic Medium. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 10814–10823. [Google Scholar]
- Mohammadizadeh, Z.; Farshi, A.; Royaee, S.J.; Jodaree, N. An Extensive Review on Spent Caustic Treatment Method in Oil and Gas Industry. J. Iran. Chem. Eng. 2018, 17, 39. [Google Scholar]
- Palanisamy, M.K.; Murugesan, A.; Ismail, A.A.M.; Srinivasan, D. Alkali activation of fly ash in self-consolidating concrete at low molar concentration. Mag. Concr. Res. 2023, 76, 201–216. [Google Scholar] [CrossRef]
- Horvat, B.; Music, B. Green Transition in Slovenian Building and Civil Engineering Industry: 10 Years of Research on Alkali-Activated Materials and Alkali-Activated Foams. Socrat. Lect. 2024, 10, 136–146. [Google Scholar]
- Kryvenko, P.; Rudenko, I.; Sikora, P.; Sanytsky, M.; Konstantynovskyi, O.; Kropyvnytska, T. Alkali-activated cements as sustainable materials for repairing building construction: A review. J. Build. Eng. 2024, 90, 109399. [Google Scholar] [CrossRef]
- Kalifa, A.Z.; Cizer, O.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A. Advances in alkali-activation of clay minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Huang, G.; Yuan, L.; Ji, Y.; Liu, B.; Xu, Z. Cooperative action and compatibility between Portland cement and MSWI bottom ash alkali-activated double gel system materials. Constr. Build. Mater. 2019, 209, 445–453. [Google Scholar] [CrossRef]
- Khorshidi, H.; Zhang, C.; Ghasemi, M. Alkali-activated binder based on red-mud with class F fly ash and ground granulated blast-furnace slag under ambient temperature. Rev. Adv. Mater. Sci. 2023, 62, 20230114. [Google Scholar] [CrossRef]
- Nijland, T.G.; Larbi, J.A. Microscopic examination of deteriorated concrete. Non-Destr. Eval. Reinf. Concr. Struct. 2010, 1, 137–179. [Google Scholar]
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Wang, S.; Pu, X.; Scrivener, K.L.; Pratt, P.L. Alkali-activated slag cement and concrete: A review of properties and problems. Adv. Cem. Res. 1995, 7, 93–102. [Google Scholar] [CrossRef]
- Thomas, R.J.; Ye, H.; Radlińska, A.; Peethamparan, S. Alkali-Activated Slag Cement Concrete A closer look at a sustainable alternative to protland cement. ACI Comm. 2016, 236, 33–38. [Google Scholar]
- Wang, H.; You, X.; Tian, J. Study on Pretreatment of Phosphogypsum and Preparation of Non Burning Building Materials. IOP Conf. Ser. Earth Environ. Sci. 2021, 668, 012076. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Zhang, L.; Li, J.; Hou, Z. Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete. Constr. Build. Mater. 2018, 186, 1072–1081. [Google Scholar] [CrossRef]
- Mashifana, T. Chemical treatment of phosphogypsum and its potential application for building and construction. Procedia Manuf. 2019, 35, 641–648. [Google Scholar] [CrossRef]
- Rashad, A.M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J. Clean. Prod. 2015, 87, 717–725. [Google Scholar] [CrossRef]
- Rożek, P.; Florek, P.; Król, M.; Mozgawa, W. Immobilization of Heavy Metals in Boroaluminosilicate Geopolymers. Materials 2021, 14, 214. [Google Scholar] [CrossRef]
- Dong, E.; Fu, S.; Wu, C.; Lv, W.; Zhang, L.; Feng, Y.; Yu, R. Value-added utilization of phosphogypsum industrial by-products in producing green Ultra-High performance Concrete: Detailed reaction kinetics and microstructure evolution mechanism. Constr. Build. Mater. 2023, 389, 131726. [Google Scholar] [CrossRef]
- Wu, F.; Ren, Y.; Qu, G.; Liu, S.; Chen, B.; Liu, X.; Li, J. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum. J. Environ. Manag. 2022, 313, 114957. [Google Scholar] [CrossRef] [PubMed]
- Oubaha, S.; Machi, A.; Mabroum, S.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Recycling of phosphogypsum and clay by-products from phosphate mines for sustainable alkali-activated construction materials. Constr. Build. Mater. 2024, 411, 134262. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, H.; Chen, B.; Cui, Q. Development and optimization of phosphogypsum-based geopolymer cement. Constr. Build. Mater. 2023, 369, 130577. [Google Scholar] [CrossRef]
- Avsar, C.; Gezerman, A.O. Industrial Waste Management: Economical Benefits of the Resource Utilization of Phosphogypsum. Int. J. Ind. Mark. 2022, 7, 1–9. [Google Scholar]
2020 | Disposal—Landfill (D1, D5, D12) | Disposal—Landfill for Hazardous Waste | Disposal—Landfill for Non-Hazardous Waste | Disposal—Landfill for Inert Waste | Disposal—Incineration (D10) | Recovery—Recycling and Backfilling | Recovery—Recycling |
---|---|---|---|---|---|---|---|
Facilities number | 6.164 | 304 | 2.405 | 3.455 | 548 | 206.346 | 200.225 |
Rest capacity [km3] | 3.997 | 0.467 | 2.503 | 1.027 | x | x | x |
Type | Improvement over Standard Bricks | Citation |
---|---|---|
Phosphogypsum |
| [49,50,51,52] |
Spent caustic |
| [53,54] |
Process Name | Gypsum (Dihydrate) Process | Hemihydrate Process | Anhydrite Process |
---|---|---|---|
Phosphogypsum form | CaSO4 · 2H2O | CaSO4 · H2O | CaSO4 |
Process Temperature | <107 °C | >107 °C | >120 °C |
H2SO4 concentration | 78% | >78% | >78% |
H3PO4 concentration | 50% | 60% | 68% |
Additional Material | Alkaline Activator | Properties of Material Compared to Conventional Solutions | Citation |
---|---|---|---|
| None |
| [50] |
| None |
| [51] |
| NaOH Na2SiO3 |
| [52] |
| NaOH |
| [100] |
| Solution of NaOH, CaCO3, MgO, sodium diphenylamine-4-sulfonate |
| [101] |
| 11.28 M NaOH |
| [106] |
| None |
| [104] |
| NaOH |
| [102] |
| Citric acid Sodium silicate |
| [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liczbińska, A.; Gębicki, J. Possibility of Using Alkali-Activated Phosphogypsum from the Production of Orthophosphoric Acid for the Building Materials—A Review. Processes 2025, 13, 97. https://doi.org/10.3390/pr13010097
Liczbińska A, Gębicki J. Possibility of Using Alkali-Activated Phosphogypsum from the Production of Orthophosphoric Acid for the Building Materials—A Review. Processes. 2025; 13(1):97. https://doi.org/10.3390/pr13010097
Chicago/Turabian StyleLiczbińska, Aleksandra, and Jacek Gębicki. 2025. "Possibility of Using Alkali-Activated Phosphogypsum from the Production of Orthophosphoric Acid for the Building Materials—A Review" Processes 13, no. 1: 97. https://doi.org/10.3390/pr13010097
APA StyleLiczbińska, A., & Gębicki, J. (2025). Possibility of Using Alkali-Activated Phosphogypsum from the Production of Orthophosphoric Acid for the Building Materials—A Review. Processes, 13(1), 97. https://doi.org/10.3390/pr13010097