Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Isothermal Titration Calorimetry
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalho, T.O.; Matias, A.E.B.; Braga, L.R.; Evangelista, S.M.; Prado, A.G.S. Calorimetric studies of removal of nonsteroidal anti-inflammatory drugs diclofenac and dipyrone from water. J. Therm. Anal. Calorim. 2011, 106, 475–481. [Google Scholar] [CrossRef]
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009, 90, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.E.; Fimmen, R.L.; Chin, Y.-P.; Mash, H.E.; Weavers, L.K. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 2011, 45, 4449–4458. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic, wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Lindqvist, N.; Tuhkanen, T.; Kronberg, L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 2005, 39, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Nakada, N.; Tanishima, T.; Shinohara, H.; Kiri, K.; Takada, H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006, 40, 3297–3303. [Google Scholar] [CrossRef]
- Winker, M.; Faika, D.; Gulyas, H.; Otterpohl, R. A comparison of pharmaceutical concentrations in raw municipal wastewater and yellow water. Sci. Total Environ. 2008, 399, 96–104. [Google Scholar] [CrossRef]
- Vulava, V.M.; Cory, W.C.; Murphey, V.L.; Ulmer, C.Z. Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. Sci. Total Environ. 2016, 565, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Bialk, H.M.; Pedersen, J.A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ. Sci. Technol. 2008, 42, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J.; Qiao, X.; Zhang, H.; Zhang, Y.; Zhou, C. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter. Chemosphere 2016, 147, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Liu, L.C.; Chen, W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef]
- Sim, W.-J.; Lee, J.-W.; Oh, J.-E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 2010, 158, 1938–1947. [Google Scholar] [CrossRef]
- Monteiro, S.C.; Boxall, A.B.A. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ. Toxicol. Chem. 2009, 28, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Le Guet, T.; Hsini, I.; Labanowski j Mondamert, L. Sorption of selected pharmaceuticals by a river sediment: Role and mechanisms of sediment or Aldrich humic substances. Environ. Sci. Pollut. Res. 2018, 25, 14532–14543. [Google Scholar] [CrossRef] [PubMed]
- Anielak, A.M.; Styszko, K.; Kwásny, J. The importance of humic substances in transporting “chemicals of emerging concern” in water and sewage environments. Molecules 2023, 28, 6483. [Google Scholar] [CrossRef] [PubMed]
- Anielak, A.M.; Styszko, K.; Kłeczek, A.; Łomínska-Płatek, D. Humic substances—Common carriers of micropollutants in municipal engineering. Energies 2022, 15, 8496. [Google Scholar] [CrossRef]
- Ruiz, S.H.; Wickramasekara, S.; Abrell, L.; Gao, X.; Chefetz, B.; Chorover, J. Complexation of trace organic contaminants with fractionated dissolved organic matter: Implications for mass spectrometric quantification. Chemosphere 2013, 91, 344–350. [Google Scholar] [CrossRef]
- Margon, A.; Pastrello, A.; Mosetti, D.; Cantone, P.; Leita, L. Interaction between diclofenac and soil humic cids, soil and sediment. Contamination 2009, 18, 489–496. [Google Scholar]
- Ji, L.; Chen, W.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 2009, 25, 11608–11613. [Google Scholar] [CrossRef]
- Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014, 186, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.K.; Park, H.S. Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int. J. Environ. Sci. Technol. 2012, 9, 85–94. [Google Scholar]
- Földényi, R.; Joó, S.; Tóth, J. Adsorption of diclofenac on activated carbon and its hypochlorination in the presence of dissolved organic matter. Int. J. Environ. Sci. Technol. 2017, 14, 1071–1080. [Google Scholar] [CrossRef]
- Bui, T.X.; Choi, H. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica. Chemosphere 2010, 80, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Klučáková, M.; Závodská, P. Diffusion of pharmaceuticals in agarose hydrogels enriched by humic acids. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131825. [Google Scholar] [CrossRef]
- Xu, J.; Koopal, L.K.; Fang, L.; Xiong, J.; Tan, W. Proton and copper binding to humic acids analyzed by XAFS spectroscopy and isothermal titration calorimetry. Environ. Sci. Technol. 2018, 52, 4099–4107. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Xu, Z.; Hu, M.; Zhang, H.; Peacock, C.L.; Liu, X.; Nie, N.; Xue, Q.; Lei, M.; Tie, B. Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W (V), during adsorption to ferrihydrite. Chem. Geol. 2020, 540, 119567. [Google Scholar] [CrossRef]
- Klučáková, M.; Krouská, J.; Kalina, M. Physico-chemical aspects of metal-fulvic complexation. Processes 2024, 12, 989. [Google Scholar] [CrossRef]
- Kimuro, S.; Kirishima, A.; Kitatsuji, Y.; Miyakawa, K.; Akiyama, D.; Sato, N. Thermodynamic study of the complexation of humic acid by calorimetry. J. Chem. Thermodyn. 2019, 132, 352–362. [Google Scholar] [CrossRef]
- Čokeša, Đ.; Radmanović, S.; Potkonjak, N.; Marković, M.; Šerbula, S. Soil humic acid and arsenite binding by isothermal titration calorimetry and dynamic light scattering: Thermodynamics and aggregation. Chemosphere 2023, 315, 137687. [Google Scholar] [CrossRef] [PubMed]
- Loosli, F.; Vitorazi, L.; Berret, J.-F.; Stoll, S. Isothermal titration calorimetry as a powerful tool to quantify and better understand agglomeration mechanisms during interaction processes between TiO2 nanoparticles and humic acids. Environ. Sci. Nano 2015, 2, 541–550. [Google Scholar] [CrossRef]
- Tan, W.F.; Koopal, L.K.; Norde, W. Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry. Environ. Sci. Technol. 2009, 43, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Khil’ko, S.L.; Semenova, R.G. Interaction of humic acid salts with drug preparations. Solid Fuel Chem. 2016, 50, 390–394. [Google Scholar] [CrossRef]
- Xu, J.; Hu, Y.-Y.; Li, X.-Y.; Chen, J.-J.; Sheng, G.-P. Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids. Environ. Pollut. 2018, 243, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Choudhary, S.; Kishore, N. Insights into the binding of the drugs diclofenac sodium and cefotaxime sodium to serum albumin: Calorimetry and spectroscopy. Eur. J. Pharm. Sci. 2012, 46, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Ràfols, C.; Zarza, S.; Bosch, E. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID’s) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE). Talanta 2014, 130, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Talele, P.; Choudhary, S.; Kishore, N. Understanding thermodynamics of drug partitioning in micelles and delivery to proteins: Studies with naproxen, diclofenac sodium, tetradecyltrimethylammonium bromide, and bovine serum albumin. J. Chem. Thermodyn. 2016, 92, 182–190. [Google Scholar] [CrossRef]
- Bou-Abdallah, F.; Sprague, S.E.; Smith, B.M.; Giffune, T.R. Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study. J. Chem. Thermodyn. 2016, 103, 299–309. [Google Scholar] [CrossRef]
- Csapó, E.; Juhász, Á.; Varga, N.; Sebők, D.; Hornok, V.; Janovák, L.; Dékány, I. Thermodynamic and kinetic characterization of pH-dependent interactions between bovine serum albumin and ibuprofen in 2D and 3D systems. Colloid. Surface. A 2016, 504, 471–478. [Google Scholar] [CrossRef]
- Seal, P.; Sikdar, J.; Roy, A.; Haldar, R. Binding of ibuprofen to human hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. J. Biomol. Struct. Dyn. 2017, 36, 3137–3154. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Vaulot, C.; Reinert, L.; Guittonneau, S.; Gadiou, R.; Duclaux, L. Thermodynamic study of seven micropollutants adsorption onto an activated carbon cloth: Van’t Hoff method, calorimetry, and COSMO-RS simulations. Environ. Sci. Pollut. Res. 2017, 24, 10005–10017. [Google Scholar] [CrossRef]
- IHSS|International Humic Substances Society. Available online: https://humic-substances.org/acidic-functional-groups-of-ihss-samples/ (accessed on 15 November 2024).
- Liu, S.; Benedetti, M.F.; Han, W.; Korshin, G.V. Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fluorescence spectroscopy. Chemosphere 2020, 261, 128189. [Google Scholar] [CrossRef] [PubMed]
- Klučáková, M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Klučáková, M. Conductometric study of the dissociation behavior of humic and fulvic acids. React. Funct. Polym. 2018, 128, 24–28. [Google Scholar] [CrossRef]
- Ritchie, J.D.; Perdue, E.M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85–96. [Google Scholar] [CrossRef]
- Thorn, A.K.; Cox, L.G. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society. Org. Geochem. 2009, 40, 484–499. [Google Scholar] [CrossRef]
Fulvic Acids | COOH (mmol/g) | OH (mmol/g) | Total Acidity (mmol/g) |
---|---|---|---|
Suwanee River | 5.77 | 1.47 | 7.24 |
Pahokee Peat | 6.25 | 1.09 | 7.34 |
Nordic Lake | 5.67 | 1.61 | 7.28 |
Fulvic Acids | ΔH (J/mol) | ΔG (kJ/mol) | ΔS (J/mol·K) |
---|---|---|---|
Suwanee River | −5032 ± 277 | −27.7 ± 1.5 | 76.2 ± 4.2 |
Pahokee Peat | −496 ± 43 | −20.6 ± 0.1 | 67.7 ± 0.4 |
Nordic Lake | −1693 ± 149 | −23.7 ± 0.2 | 74.0 ± 0.2 |
Fulvic Acids | ΔH (J/mol) | ΔG (kJ/mol) | ΔS (J/mol·K) |
---|---|---|---|
Suwanee River | −5356 ± 295 | −24.6 ± 1.3 | 64.7 ± 3.6 |
Pahokee Peat | −3302 ± 117 | −20.4 ± 0.1 | 57.4 ± 0.2 |
Nordic Lake | −8975 ± 95 | −23.5 ± 0.1 | 48.9 ± 0.5 |
Fulvic Acids | ΔH (J/mol) | ΔG (kJ/mol) | ΔS (J/mol·K) |
---|---|---|---|
Suwanee River | −3709 ± 204 | −23.9 ± 1.3 | 67.8 ± 3.7 |
Pahokee Peat | −9938 ± 645 | −23.7 ± 0.2 | 46.2 ± 1.5 |
Nordic Lake | −7770 ± 249 | −23.8 ± 4.3 | 53.7 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klučáková, M.; Krouská, J. Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions. Processes 2025, 13, 49. https://doi.org/10.3390/pr13010049
Klučáková M, Krouská J. Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions. Processes. 2025; 13(1):49. https://doi.org/10.3390/pr13010049
Chicago/Turabian StyleKlučáková, Martina, and Jitka Krouská. 2025. "Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions" Processes 13, no. 1: 49. https://doi.org/10.3390/pr13010049
APA StyleKlučáková, M., & Krouská, J. (2025). Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions. Processes, 13(1), 49. https://doi.org/10.3390/pr13010049