Development of Vitamin C-Enriched Oral Disintegration Films Using Chia Mucilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Films Production
2.3. Characterization of Physical, Mechanical and Barrier Properties of the Films
2.4. Surface pH
2.5. Disintegration Time
2.6. Differential Scanning Calorimetry (DSC)
2.7. Fourier Transform-Infrared Spectroscopy (FT-IR)
2.8. Assessment of the Stability of Vitamin C in Films During the Storage
2.9. Statistical Analysis
3. Results
3.1. Visual Aspects, Mechanical and Barrier Properties of the Films
3.2. Surface pH
3.3. Disintegration Time
3.4. Differential Scanning Calorimetry (DSC)
3.5. Fourier Transform-Infrared Spectroscopy (FT-IR)
3.6. Assessment of the Stability of Vitamin C in Films During the Storage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pezik, E.; Gulsun, T.; Sahin, S.; Vural, İ. Development and Characterization of Pullulan-Based Orally Disintegrating Films Containing Amlodipine Besylate. Eur. J. Pharm. Sci. 2021, 156, 105597. [Google Scholar] [CrossRef] [PubMed]
- Borges, J.G.; De Carvalho, R.A. Orally Disintegrating Films Containing Propolis: Properties and Release Profile. J. Pharm. Sci. 2015, 104, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Garcia, V.A.; Borges, J.G.; Osiro, D.; Vanin, F.M.; de Carvalho, R.A. Orally Disintegrating Films Based on Gelatin and Pregelatinized Starch: New Carriers of Active Compounds from Acerola. Food Hydrocoll. 2020, 101, 105518. [Google Scholar] [CrossRef]
- Resta, V.G.; Mali, S. Efeito De Sacarose E Glicerol Como Plastificantes Em Filmes Orodispersíveis De Amido E Gelatina. Iniciação Científica Cesumar 2019, 21, 15. [Google Scholar] [CrossRef]
- Palezi, S.C.; Fernandes, S.S.; Barbosa, S.C.; Primel, E.G.; Martins, V.G. Orally Disintegrating Films Based on Sodium Alginate as a Carrier Vehicle for Vitamin C. Int. J. Food Sci. Technol. 2023, 59, 864–871. [Google Scholar] [CrossRef]
- Deng, L.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Characterization of Gelatin/Zein Films Fabricated by Electrospinning vs Solvent Casting; Elsevier: Amsterdam, The Netherlands, 2018; Volume 74, ISBN 8657188982981. [Google Scholar]
- dos Santos Garcia, V.A.; Borges, J.G.; Maciel, V.B.V.; Mazalli, M.R.; Lapa-Guimaraes, J.d.G.; Vanin, F.M.; de Carvalho, R.A. Gelatin/Starch Orally Disintegrating Films as a Promising System for Vitamin C Delivery. Food Hydrocoll. 2018, 79, 127–135. [Google Scholar] [CrossRef]
- Verma, U.; Rajput, R.; Naik, J.B. Development and Characterization of Fast Dissolving Film of Chitosan Embedded Famotidine Using 32 Full Factorial Design Approach. Mater. Today Proc. 2018, 5, 408–414. [Google Scholar] [CrossRef]
- Singh, H.; Singla, Y.P.; Narang, R.S.; Pandita, D.; Singh, S.; Narang, J.K. Frovatriptan Loaded Hydroxy Propyl Methyl Cellulose/Treated Chitosan Based Composite Fast Dissolving Sublingual Films for Management of Migraine. J. Drug Deliv. Sci. Technol. 2018, 47, 230–239. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Romani, V.P.; da Silva Filipini, G.; Martins, V.G. Chia Seeds to Develop New Biodegradable Polymers for Food Packaging: Properties and Biodegradability. Polym. Eng. Sci. 2020, 60, 2214–2223. [Google Scholar] [CrossRef]
- Xiao, Z.; Yan, C.; Jia, C.; Li, Y.; Li, Y.; Li, J.; Yang, X.; Zhan, X.; Ma, C. Structural Characterization of Chia Seed Polysaccharides and Evaluation of Its Immunomodulatory and Antioxidant Activities. Food Chem. X 2023, 20, 101011. [Google Scholar] [CrossRef] [PubMed]
- Balbino, T.R.; Sánchez-Muñoz, S.; Díaz-Ruíz, E.; Rocha, T.M.; Mier-Alba, E.; Custódio Inácio, S.; Jose Castro-Alonso, M.; de Carvalho Santos-Ebinuma, V.; Pereira, J.F.B.; Santos, J.C.; et al. Lignocellulosic Biorefineries as a Platform for the Production of High-Value Yeast Derived Pigments—A Review. Bioresour. Technol. 2023, 386, 129549. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Aguilera, J.M.; Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Characterization and Microstructure of Films Made from Mucilage of Salvia Hispanica and Whey Protein Concentrate. J. Food Eng. 2012, 111, 511–518. [Google Scholar] [CrossRef]
- Abd El Azim, H.; Nafee, N.; Ramadan, A.; Khalafallah, N. Liposomal Buccal Mucoadhesive Film for Improved Delivery and Permeation of Water-Soluble Vitamins. Int. J. Pharm. 2015, 488, 78–85. [Google Scholar] [CrossRef]
- Said, H.M. Recent Advances in Carrier-Mediated Intestinal Absorption of Water-Soluble Vitamins. Annu. Rev. Physiol. 2004, 66, 419–446. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H.; Chen, S.; Corpe, C.; Levine, M.; Dutta, A.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and Chromosomal Mapping of the Human Nonfunctional Gene for L-Gulono-γ-Lactone Oxidase, the Enzyme for L-Ascorbic Acid Biosynthesis Missing in Man. J. Biol. Chem. 1994, 269, 13685–13688. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.S.; Salas-Mellado, M.d.l.M. Addition of Chia Seed Mucilage for Reduction of Fat Content in Bread and Cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef]
- ASTM D882-02; Standard Test Methods for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2002.
- Carolina Visser, J.; Weggemans, O.A.F.; Boosman, R.J.; Loos, K.U.; Frijlink, H.W.; Woerdenbag, H.J. Increased Drug Load and Polymer Compatibility of Bilayered Orodispersible Films. Eur. J. Pharm. Sci. 2017, 107, 183–190. [Google Scholar] [CrossRef]
- ASTM E96-00; Standard Test Methods for Water Vapor Transmission of Material. ASTM International: West Conshohocken, PA, USA, 2000.
- Gontard, N.; Duchez, C.; Cuq, J.L.; Gilbert, S. Edible Composite Films of Wheat and Lipids: Water Vapor Permeability and Other Physical Properties. Int. J. Food Sci. Technol. 1994, 29, 39–50. [Google Scholar] [CrossRef]
- Prabhu, P.; Malli, R.; Koland, M.; Vijaynarayana, K.; D′Souza, U.; Harish, N.; Shastry, C.; Charyulu, R. Formulation and Evaluation of Fast Dissolving Films of Levocitirizine Di Hydrochloride. Int. J. Pharm. Investig. 2011, 1, 99. [Google Scholar] [CrossRef]
- Wong, C.F.; Yuen, K.H.; Peh, K.K. An In-Vitro Method for Buccal Adhesion Studies: Importance of Instrument Variables. Int. J. Pharm. 1999, 180, 47–57. [Google Scholar] [CrossRef]
- Perumal, V.A.; Lutchman, D.; Mackraj, I.; Govender, T. Formulation of Monolayered Films with Drug and Polymers of Opposing Solubilities. Int. J. Pharm. 2008, 358, 184–191. [Google Scholar] [CrossRef]
- Jyoti, A.; Gurpreet, S.; Seema, S.; Rana, A.C. Fast Dissolving Films: A Novel Approach To Oral Drug Delivery. Int. Res. J. Pharm. 2011, 2, 69–74. [Google Scholar]
- Yu, S.H.; Tsai, M.L.; Lin, B.X.; Lin, C.W.; Mi, F.L. Tea Catechins-Cross-Linked Methylcellulose Active Films for Inhibition of Light Irradiation and Lipid Peroxidation Induced β-Carotene Degradation. Food Hydrocoll. 2015, 44, 491–505. [Google Scholar] [CrossRef]
- Cupone, I.E.; Dellera, E.; Marra, F.; Giori, A.M. Development and Characterization of an Orodispersible Film for Vitamin D3 Supplementation. Molecules 2020, 25, 5851. [Google Scholar] [CrossRef]
- Desai, K.G.H.; Park, H.J. Encapsulation of Vitamin C in Tripolyphosphate Cross-Linked Chitosan Microspheres by Spray Drying. J. Microencapsul. 2005, 22, 179–192. [Google Scholar] [CrossRef]
- Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S.; Imran, M. A Green Method for the Synthesis of Copper Nanoparticles Using L-Ascorbic Acid. Rev. Mater. 2014, 19, 197–203. [Google Scholar] [CrossRef]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004; ISBN-10:9241546123/ISBN-13:978-9241546126. [Google Scholar]
- Khodaman, E.; Barzegar, H.; Jokar, A.; Jooyandeh, H. Production and Evaluation of Physicochemical, Mechanical and Antimicrobial Properties of Chia (Salvia hispanica L.) Mucilage-Gelatin Based Edible Films Incorporated with Chitosan Nanoparticles. J. Food Meas. Charact. 2022, 16, 3547–3556. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizer Effect on Mechanical Properties of β-Lactoglobulin Films. J. Food Eng. 2001, 50, 149–155. [Google Scholar] [CrossRef]
- Sapiee, N.H.; Mat Saufi, M.H.; Abu Bakar, N.F.; Adam, F. Fabrication and Characterization of Electrospun κ-Carrageenan Based Oral Dispersible Film with Vitamin C. Mater. Today Proc. 2023, in press. [CrossRef]
- Wagner, B.A.; Buettner, G.R. Stability of Aqueous Solutions of Ascorbate for Basic Research and for Intravenous Administration. Adv. Redox Res. 2023, 9, 100077. [Google Scholar] [CrossRef] [PubMed]
- Bharti, K.; Mittal, P.; Mishra, B. Formulation and Characterization of Fast Dissolving Oral Films Containing Buspirone Hydrochloride Nanoparticles Using Design of Experiment. J. Drug Deliv. Sci. Technol. 2019, 49, 420–432. [Google Scholar] [CrossRef]
- Salazar Vega, I.M.; Quintana Owen, P.; Segura Campos, M.R. Physicochemical, Thermal, Mechanical, Optical, and Barrier Characterization of Chia (Salvia hispanica L.) Mucilage-Protein Concentrate Biodegradable Films. J. Food Sci. 2020, 85, 892–902. [Google Scholar] [CrossRef]
Properties | CMF | CMF + Vit C |
---|---|---|
Thickness (mm) | 0.0623 ± 0.008 b | 0.1134 ± 0.003 a |
Tensile strength (MPa) | 11.81 ± 1.83 a | 5.34 ± 1.03 b |
Elongation at break (%) | 16.95 ± 0.61 a | 14.81 ± 0.56 b |
Fold endurance | >300 | >300 |
Water solubility (%) | 100 | 100 |
WVP [g.mm/(kPa.d.m2)] | 5.734 ± 0.027 b | 9.641 ± 1.412 a |
Surface pH | 6.45 ± 0.29 a | 5.07 ± 0.16 b |
Disintegration time (s) | 39.97 ± 1.41 b | 53.17 ± 1.10 a |
L * | a * | b * | ∆E | |||||
---|---|---|---|---|---|---|---|---|
Day | 30 °C | 40 °C | 30 °C | 40 °C | 30 °C | 40 °C | 30 °C | 40 °C |
7 | 75.98 ± 0.17 aA | 71.10 ± 0.15 aB | 3.09 ± 0.65 eB | 11.63 ± 0.11 bA | 26.93 ± 0.78 eB | 37.01 ± 0.13 bA | 33.18 ± 0.77 bB | 48.46 ± 4.01 cA |
14 | 68.80 ± 0.97 dB | 71.12 ± 0.02 aA | 15.81 ± 0.32 aA | 11.60 ± 0.01 bB | 42.01 ± 0.50 aA | 36.97 ± 0.02 bB | 51.86 ± 0.24 aB | 54.67 ± 1.31 bA |
21 | 72.10 ± 0.98 bA | 71.12 ± 0.01 aB | 9.93 ± 0.47 dB | 11.60 ± 0.01 bA | 35.03 ± 0.56 dB | 36.98 ± 0.01 bA | 50.53 ± 2.05 aB | 61.83 ± 0.26 aA |
28 | 70.50 ± 0.40 cA | 70.67 ± 0.68 bA | 12.65 ± 0.21 bA | 12.42 ± 0.44 aA | 38.19 ± 0.33 bA | 37.95 ± 0.57 aA | 50.72 ± 0.04 aB | 53.60 ± 0.14 bA |
35 | 71.21 ± 0.06 bcA | 70.87 ± 0.04 abB | 11.44 ± 0.15 cB | 12.05 ± 0.03 abA | 36.79 ± 0.17 cB | 37.50 ± 0.03 abA | 50.84 ± 0.75 aB | 55.18 ± 0.17 bA |
Time (Min) | Day | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
7 | 14 | 21 | 28 | 35 | ||||||
30 °C | 40 °C | 30 °C | 40 °C | 30 °C | 40 °C | 30 °C | 40 °C | 30 °C | 40 °C | |
1 | 477.50 ± 0.23 A,a | 411.28 ± 0.58 A,a | 457.50 ± 0.27 A,a | 378.30 ± 0.49 A,d | 441.71 ± 0.40 A,d | 394.93 ± 0.77 A,c | 451.19 ± 0.29 A,c | 408.70 ± 0.31 A,b | 380.85 ± 0.42 A,e | 319.19 ± 0.55 A,e |
5 | 443.62 ± 0.51 B,a | 408.78 ± 0.58 B,a | 438.32 ± 0.30 B,c | 376.45 ± 0.26 B,d | 440.63 ± 0.35 B,b | 388.79 ± 0.33 B,b | 428.14 ± 0.28 B,d | 385.15 ± 0.80 D,c | 380.45 ± 0.50 A,e | 290.69 ± 0.31 B,e |
15 | 384.15 ± 0.82 C,d | 407.95 ± 0.95 B,a | 430.64 ± 0.32 C,b | 369.24 ± 0.42 D,d | 438.28 ± 0.48 C,a | 380.84 ± 0.20 C,c | 408.06 ± 0.07 E,c | 397.63 ± 0.67 B,b | 362.17 ± 0.34 B,e | 277.72 ± 0.31 C,e |
30 | 321.61 ± 0.25 D,e | 391.74 ± 0.96 C,a | 413.41 ± 0.45 D,c | 365.23 ± 0.51 E,c | 434.68 ± 0.43 D,a | 356.03 ± 0.84 D,d | 415.58 ± 0.23 C,b | 389.28 ± 0.84 C,b | 339.16 ± 0.44 C,d | 229.10 ± 0.63 D,e |
60 | 220.59 ± 0.38 E,a | 407.73 ± 0.49 B,a | 398.53 ± 0.68 E,c | 374.57 ± 0.50 C,b | 428.98 ± 0.26 E,a | 328.83 ± 0.81 E,d | 412.25 ± 0.43 D,b | 368.14 ± 0.40 E,c | 329.87 ± 0.13 D,d | 225.24 ± 0.32 E,e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palezi, S.C.; Latorres, J.M.; Fernandes, S.S.; Martins, V.G. Development of Vitamin C-Enriched Oral Disintegration Films Using Chia Mucilage. Processes 2025, 13, 250. https://doi.org/10.3390/pr13010250
Palezi SC, Latorres JM, Fernandes SS, Martins VG. Development of Vitamin C-Enriched Oral Disintegration Films Using Chia Mucilage. Processes. 2025; 13(1):250. https://doi.org/10.3390/pr13010250
Chicago/Turabian StylePalezi, Simone Canabarro, Juliana Machado Latorres, Sibele Santos Fernandes, and Vilásia Guimarães Martins. 2025. "Development of Vitamin C-Enriched Oral Disintegration Films Using Chia Mucilage" Processes 13, no. 1: 250. https://doi.org/10.3390/pr13010250
APA StylePalezi, S. C., Latorres, J. M., Fernandes, S. S., & Martins, V. G. (2025). Development of Vitamin C-Enriched Oral Disintegration Films Using Chia Mucilage. Processes, 13(1), 250. https://doi.org/10.3390/pr13010250