A Purely Real-Valued Fast Estimator of Dynamic Harmonics for Application in Embedded Monitoring Devices in Power-Electronic Grids
Abstract
:1. Introduction
1.1. Background
1.2. State of the Art
1.3. Motivation and Innovation
1.4. Paper Organization
2. Real-Valued Estimation Model in Trigonometric Form for Dynamic Harmonics
3. Parameter Estimation Solution and Theoretical Analysis of Estimation Error
3.1. Parameter Estimation Solution
3.2. Theoretical Analysis of Estimation Error
4. Proposed Real-Valued Fast Estimator of Dynamic Harmonics
4.1. Proposed Real-Valued Fast Estimator Based on Estimation Error Modification
4.2. Parameter Selection
4.2.1. Window Function Selection
4.2.2. Window Interval Selection
4.2.3. Fitting Order Selection
5. Performance Evaluation
5.1. Accuracy Evaluation
5.1.1. Scenario 1
5.1.2. Scenario 2
5.1.3. Scenario 3
5.2. Computational Time Consumption Evaluation
5.2.1. Time Consumption Comparison
5.2.2. Computational Complexity Analysis
5.2.3. Implementation Time Consumption Test on Embedded Prototype
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HVDC | High-Voltage Direct Current |
FFT | Fast Fourier transform |
IpDFT | Interpolated DFT |
ESPRIT | Estimation of signal parameters via rotational invariance technique |
TFT | Taylor Fourier transform |
I-TFT | Iterative TFT |
MCU | Microcontroller unit |
RAM | Random Access Memory |
SNR | Signal-to-noise ratio |
FE | Frequency error |
ME | Magnitude error |
PE | Phase angle error |
ADC | Analog-to-digital conversion |
FPGA | Field-Programmable Gate Array |
DSP | Digital Signal Processor |
Variables and Paraments | |
The amplitude of the mth harmonic at time t | |
The frequency of the mth harmonic at time t | |
The phase of the mth harmonic at time t | |
M | The number of harmonics |
Denotes the th derivative of | |
The initial amplitude | |
The amplitude rate of change | |
The th derivative of | |
The initial phase angle | |
The frequency deviation | |
, | The composite modulation components that simultaneously incorporate both the amplitude and frequency dynamics |
, | The kth derivatives of and |
The sampling period | |
The diagonal matrix of the kth order expansion time coefficients | |
, | The vectors of trigonometric expansion basis functions |
The window function-weighted diagonal matrix | |
, | The estimator parameter vectors for the derivatives of the composite modulation components |
, | The frequency response of the filter and |
, | The q-th order fitting parameters |
The result of the j-th iteration | |
The initial phase angle of the mth harmonic | |
The frequency deviation of the fundamental component | |
The frequency deviation of the mth harmonic | |
The frequency ramp rate of the fundamental component | |
The frequency ramp rate of the mth harmonic | |
The modulation amplitude of the amplitude oscillation | |
The modulation frequency of the amplitude oscillation | |
The modulation phase angle of the amplitude oscillation | |
The modulation amplitude of frequency oscillation | |
The modulation frequency of frequency oscillation | |
The modulation phase angle of frequency oscillation | |
The amplitude ramp rate of each component |
References
- Fan, Y.; Xu, F.; Wang, C.; Shu, Q. A Harmonic Impedance on Utility Side Estimation Method Based on Laplace Mixture Model. IEEE Trans. Power Del. 2024, 39, 1774–1782. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, F.; Jiang, W.; Pan, X.; Li, P.; Zhou, X.; Wang, Y. Efficient Identification Method for Power Quality Disturbance: A Hybrid Data-Driven Strategy. Processes 2024, 12, 1395. [Google Scholar] [CrossRef]
- Ji, K. Harmonic Power Modeling for Converter-Driven Stability Study. IEEE Trans. Power Del. 2023, 38, 3968–3979. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Wang, Q.; Sun, K.; Li, K.; Zhang, Y. Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads. Appl. Energy 2023, 329, 120298. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.; Feng, X. Hierarchical Coordination of Networked-Microgrids Toward Decentralized Operation: A Safe Deep Reinforcement Learning Method. IEEE Trans. Sustain. Energy 2024, 15, 1981–1993. [Google Scholar] [CrossRef]
- Shan, P.; Sun, Y.; Song, Y.; Zhang, F.; Li, Y.; Sun, K. Adaptive Parameter Tuning and Virtual Impedance Injection Control for Coupled Harmonic Mitigation of Photovoltaic Converter. IEEE Trans. Power Electron. 2025, 40, 162–175. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, Y.; Li, J. Aggregator-Network Coordinated Peer-to-Peer Multi-Energy Trading via Adaptive Robust Stochastic Optimization. IEEE Trans. Power Syst. 2024, 39, 7124–7137. [Google Scholar] [CrossRef]
- Taghvaie, A.; Warnakulasuriya, T.; Kumar, D.; Zare, F.; Sharma, R.; Vilathgamuwa, D.M. A Comprehensive Review of Harmonic Issues and Estimation Techniques in Power System Networks Based on Traditional and Artificial Intelligence/Machine Learning. IEEE Access 2023, 11, 31417–31442. [Google Scholar] [CrossRef]
- Mariscotti, A.; Mingotti, A. The Effects of Supraharmonic Distortion in MV and LV AC Grids. Sensors 2024, 24, 2465. [Google Scholar] [CrossRef]
- Jiang, X.; Yi, H.; Zhuo, F.; Li, Y. An Adaptive Stabilization Strategy for Harmonic Oscillation of SAPF Interacted With Nonlinear Load and Grid Impedance. IEEE Trans. Ind. Electron. 2024, 71, 9044–9054. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, H.; Zhuo, F.; Li, Y.; Jiang, X. Harmonic oscillation analysis and stabilization method comparison of shunt active power filter in full compensation mode. IET Power Electron. 2024, 17, 1145–1158. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, K.; Sun, K.; Liu, Z.; Xu, Q. Harmonic modeling of the series-connected multi-pulse rectifiers under unbalanced conditions. IEEE Trans. Ind. Electron. 2023, 70, 6494–6505. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Wu, C.; Li, M.; Guerrero, J.; Wong, M. A Generalized Harmonic Compensation Control Strategy for Mitigating Subsynchronous Oscillation in Synchronverter Based Wind Farm Connected to Series Compensated Transmission Line. IEEE Trans. Power Syst. 2023, 38, 2610–2620. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Y.; Duan, X. Enhanced Commutation Failure Predictive Detection Method and Control Strategy in Multi-Infeed LCC-HVDC Systems Considering Voltage Harmonics. IEEE Trans. Power Syst. 2021, 36, 81–96. [Google Scholar] [CrossRef]
- Wang, L.; Yao, W.; Xiong, Y.; Shi, Z.; Wen, J. Commutation Failure Analysis and Prevention of UHVDC System With Hierarchical Connection Considering Voltage Harmonics. IEEE Trans. Power Del. 2022, 37, 3142–3154. [Google Scholar] [CrossRef]
- Demin, S.; Barbie, E.; Heistrene, L.; Belikov, J.; Petlenkov, E.; Levron, Y.; Baimel, D. Implementation of Series Resonance-Based Fault Current Limiter for Enhanced Transient Stability of Grid-Connected Photovoltaic Farm. Electronics 2024, 13, 2987. [Google Scholar] [CrossRef]
- Aleixo, R.R.; Lomar, T.S.; Silva, L.R.M.; Monteiro, H.L.M.; Duque, C.A. Real-Time B-Spline Interpolation for Harmonic Phasor Estimation in Power Systems. IEEE Trans. Instrum. Meas. 2022, 71, 9004009. [Google Scholar] [CrossRef]
- Wu, H.; Song, H.; Bai, Y.; Fan, L.; Jin, J.; Xing, J. Interpolated DFT Algorithm for Frequency Estimation by Using Maximum Sidelobe Decay Windows. IEEE Access 2022, 10, 95748–95762. [Google Scholar] [CrossRef]
- Afrandideh, S. A Modified DFT-Based Phasor Estimation Algorithm Using an FIR Notch Filter. IEEE Trans. Power Del. 2023, 38, 1308–1315. [Google Scholar] [CrossRef]
- Matusiak, A.; Borkowski, J.; Mroczka, J. Noniterative method for frequency estimation based on interpolated DFT with low-order harmonics elimination. Measurement 2022, 196, 111241. [Google Scholar] [CrossRef]
- Khodaparast, J.; Fosso, O.B.; Molinas, M. Phasor Estimation by EMD-Assisted Prony. IEEE Trans. Power Del. 2022, 37, 4736–4748. [Google Scholar] [CrossRef]
- Rao, K.S.; Shubhanga, K.N. A Comparison of SVD-Augmented Prony Algorithms for Noisy Power System Signals. IEEE Access 2023, 11, 143457–143474. [Google Scholar] [CrossRef]
- Anshuman, A.; Jena, M.K.; Panigrahi, B.K. Linear Estimation of Low-Frequency Modal Oscillations Parameters Through Nonlinear Characterization. IEEE Trans. Instrum. Meas. 2023, 72, 9004404. [Google Scholar] [CrossRef]
- Eranti, P.K.; Barkana, B.D. An Overview of Direction-of-Arrival Estimation Methods Using Adaptive Directional Time-Frequency Distributions. Electronics 2022, 11, 1321. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Tiwari, A.N.; Singh, S.N. Harmonic and Interharmonic Estimation Using Poincare Filtering Assisted ESPRIT Method. IEEE Trans. Ind. Appl. 2023, 59, 4859–4867. [Google Scholar] [CrossRef]
- Serna, J.A.d.l.O. Dynamic Harmonic Analysis With FIR Filters Designed With O-Splines. IEEE Trans. Circuits Syst. I-Regul. Pap. 2020, 67, 5092–5100. [Google Scholar] [CrossRef]
- Singh, A.; Jaafari, K.A.; Parida, S.K.; Al-Durra, A.; Zeineldin, H.H.; El-Saadany, E.F. Dynamic Synchrophasor Estimation Algorithm Using Taylor Weighted Least Square Method With Harmonic Input Model. IEEE Trans. Ind. Appl. 2023, 59, 7417–7427. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, H.; Terzija, V. An Embedded Estimator for Online Harmonic Monitoring in Power-Electronic Grids. IEEE Trans. Smart Grid 2022, 13, 4677–4689. [Google Scholar] [CrossRef]
- Shekar, H.B.; Bhat, S.S.; Shetty, R. Edge Detection in Gray-Scale Images Using Partial Sum of Second-Order Taylor Series Expansion. SN Comput. Sci. 2024, 5, 197. [Google Scholar] [CrossRef]
- Paux, J.; Morin, L.; Gélébart, L. A Discrete Sine-Cosine Transforms Galerkin Method for the Conductivity of Heterogeneous Materials With Mixed Dirichlet/Neumann Boundary Conditions. Int. J. Numer. Meth. Eng. 2024, 126, e7615. [Google Scholar] [CrossRef]
- Zhao, R. Least lp-norm design of complex exponential structure variable fractional delay FIR filters. Signal Process. 2024, 218, 109387. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.N.; Zhang, L.X.; Zhao, J. Inference for high-dimensional linear expectile regression with de-biasing method. Comput. Stat. Data An. 2024, 198, 107997. [Google Scholar] [CrossRef]
- Prabhu, K.M.M. Window Functions and Their Applications in Signal Processing; Taylor & Francis Group: Oxford, UK, 2013; p. 93. [Google Scholar]
- Das, M.; Kumar, R.; Sahana, B.C. Implementation of effective hybrid window function for E.C.G signal denoising. Trait. Signal 2020, 37, 119–128. [Google Scholar] [CrossRef]
- Justo, J.F.; Beccaro, W. Generalized Adaptive Polynomial Window Function. IEEE Access 2020, 8, 187584–187589. [Google Scholar] [CrossRef]
- Cicek, A.; Erenoglu, A.K.; Erdinc, O.; Bozkurt, A.; Tascikaraoglu, A.; Catalao, J.P.S. Implementing a Demand Side Management Strategy for Harmonics Mitigation in a Smart Home Using Real Measurements of Household Appliances. Int. J. Electr. Power Energy Syst. 2021, 125, 106528. [Google Scholar] [CrossRef]
Method | Sets |
---|---|
IpDFT | The window interval was set to T = 0.16 s. The signal was processed using the Hanning window. Three-spectrum-line interpolation was used to estimate the harmonics. |
Prony | The window interval was set to T = 0.16 s. Model order was set to be 1024. |
ESPRIT | The window interval was set to T = 0.16 s. Model order was set to be 1024. |
I-TFT | The window interval was set to T = 0.16 s. Expansion order was set to be 2. The signal was processed used cos4x window. |
Proposed | The window interval was set to T = 0.16 s. Expansion order was set to be 2. The signal was processed using the cos4x window. Fitting order was set to Q = 10. |
Method | Computational Complexity | Variable Type | Solving Pseudo Inverse | Estimation Precision for Dynamic Harmonics |
---|---|---|---|---|
IpDFT | Complex-value variable | No | Lowest precision | |
Prony | Complex-value variable | Yes | Higher precision by setting a higher model order with greater degrees of freedom | |
ESPRIT | Complex-value variable | Yes | Higher precision by setting a higher model order with greater degrees of freedom | |
I-TFT | Complex-value variable | Yes | Highest precision | |
Proposed | Purely real-value variable | No | Highest precision |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Zou, C.; Wu, H.; Gao, B.; Sun, H.; Jin, Z. A Purely Real-Valued Fast Estimator of Dynamic Harmonics for Application in Embedded Monitoring Devices in Power-Electronic Grids. Processes 2025, 13, 227. https://doi.org/10.3390/pr13010227
Luo X, Zou C, Wu H, Gao B, Sun H, Jin Z. A Purely Real-Valued Fast Estimator of Dynamic Harmonics for Application in Embedded Monitoring Devices in Power-Electronic Grids. Processes. 2025; 13(1):227. https://doi.org/10.3390/pr13010227
Chicago/Turabian StyleLuo, Xiao, Caihai Zou, Haoqiang Wu, Boyang Gao, Hongjian Sun, and Zongshuai Jin. 2025. "A Purely Real-Valued Fast Estimator of Dynamic Harmonics for Application in Embedded Monitoring Devices in Power-Electronic Grids" Processes 13, no. 1: 227. https://doi.org/10.3390/pr13010227
APA StyleLuo, X., Zou, C., Wu, H., Gao, B., Sun, H., & Jin, Z. (2025). A Purely Real-Valued Fast Estimator of Dynamic Harmonics for Application in Embedded Monitoring Devices in Power-Electronic Grids. Processes, 13(1), 227. https://doi.org/10.3390/pr13010227