A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory
Abstract
:1. Introduction
2. Theoretical Foundation Research
2.1. Improved Black-Winged Kite Algorithm
2.1.1. Basic Black-Winged Kite Algorithm
2.1.2. Improvement Strategies
- (1)
- Tent Chaotic Mapping
- (2)
- Reverse Learning Strategy Based on Dynamic Lens Imaging
- (3)
- Correction Strategy Based on Fraunhofer Diffraction
2.2. Informer
2.3. BiLSTM
3. Gas Concentration Prediction Model Based on IBKA-Informer-BiLSTM
3.1. Development of the IBKA-Informer-BiLSTM Gas Concentration Prediction Model
- Step 1: The methane data collected from the Buertai Coal Mine is randomly divided into a training set (70%) and a test set (30%), which also serve as the output.
- Step 2: Utilize the temporal nature of the methane data to construct an initial IBKA-Informer-BiLSTM gas prediction model.
- Step 3: Optimize the hyperparameters of the parallel architecture model using the IBKA. The improved algorithm initializes the black-winged kite population through the Tent map, setting parameters such as population size, dimensions, upper and lower limits, and maximum iteration number. The optimization parameters include the hidden dimensions of the parallel architecture model, the number of encoders and decoders, learning rate, and regularization coefficient. During the optimization process, the Root Mean Squared Error (RMSE) is used as the objective function, with criteria including whether the training error is less than 0.01 and whether the maximum iteration number is reached, to ensure the effectiveness of the IBKA.
- Step 4: Construct the final IBKA-Informer-BiLSTM gas prediction model using the optimized parameters and predict the test data to validate the model’s accuracy and applicability. Conduct a comprehensive evaluation of the model’s performance and compare it with other models to demonstrate its predictive accuracy and superiority.
3.2. Project Overview and Data Preprocessing
3.3. Superiority Verification and Hyperparameter Optimization of IBKA
3.3.1. Testing and Comparative Analysis of Optimization Algorithms
Benchmark Test Functions
Selection of Key Parameters for the Improved Algorithm
Ablation Experiment
Validation Line for the Superiority of the IBKA
Wilcoxon Rank-Sum Test
3.3.2. Hyperparameter Optimization Based on the IBKA
4. Model Evaluation and Comparison
4.1. Model Training and Testing
4.2. Model Comparison
4.3. Verification of Model Generalization Capability
5. Discussions
6. Conclusions
- (1)
- By improving the traditional Black-winged Kite Algorithm (BKA), including the introduction of Tent chaotic mapping, the integration of dynamic convex lens imaging, and the adoption of Fraunhofer diffraction search strategy, the experimental results demonstrated that the performance of the IBKA was significantly enhanced, exhibiting higher search accuracy, faster convergence speed, and robust practicality.
- (2)
- The combination of the IBKA with the Informer-BiLSTM prediction model, through the optimization of seven hyperparameters within the model, further improved the prediction accuracy. The research results indicated that this coupled model achieved low MAE, MAPE, and RMSE values, along with a high R2 value, on both the training and test sets, showcasing excellent prediction performance.
- (3)
- A comparative analysis was conducted between the prediction results of the IBKA-Informer-BiLSTM model and six reference models. The results revealed that the coupled model achieved an MAE of 0.0005971, an RMSE of 0.0008005, and an R2 of 0.9589 on the test set. This conclusion demonstrates the superiority of the IBKA-Informer-BiLSTM model in predicting methane concentrations in coal mine roadways.
- (4)
- The application of the model to other methane concentration datasets from Buertai Mine’s roadways resulted in R2 values exceeding 0.95 on both the training and test sets, validating the generalization ability of the IBKA-Informer-BiLSTM prediction model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Fu, G.; Lyu, Q.; Jingru, W.; Yali, W.; Meng, H.; Yuxuan, L.; Xuecai, X. Accident case-driven study on the causal modeling and prevention strategies of coal-mine gas-explosion accidents: A systematic analysis of coal-mine accidents in China. Resour. Policy 2024, 88, 104425. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, K.; Reniers, G.; You, G. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018. Process Saf. Environ. Prot. 2020, 133, 332–340. [Google Scholar] [CrossRef]
- Xie, X.; Shen, S.; Fu, G.; Xueming, S.; Jun, H.; Qingsong, J.; Zhao, S. Accident case data–accident cause model hybrid-driven coal and gas outburst accident analysis: Evidence from 84 accidents in China during 2008–2018. Process Saf. Environ. Prot. 2022, 164, 67–90. [Google Scholar] [CrossRef]
- Ray, S.K.; Khan, A.M.; Mohalik, N.K.; Mishra, D.; Mandal, S.; Pandey, J.K. Review of preventive and constructive measures for coal mine explosions: An Indian perspective. Int. J. Min. Sci. Technol. 2022, 32, 471–485. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory studies of polymer compositions for well-kill under increased fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Legkokonets, V.A.; Islamov, S.R.; Mardashov, D.V. Multifactor analysis of well killing operations on oil and gas condensate field with a fractured reservoir. In Topical Issues of Rational Use of Mineral Resources, Proceedings of the International Forum-Contest of Young Researchers, Petersburg, Russia, 18–20 April 2018; CRC Press: Boca Raton, FL, USA, 2019; pp. 111–118. [Google Scholar]
- Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas Sci. Eng. 2021, 90, 103930. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, H.; Jiang, Z.; Wu, X. Gas flow laws in coal subjected to hydraulic slotting and a prediction model for its permeability-enhancing effect. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–15. [Google Scholar] [CrossRef]
- Liu, A.; Liu, S.; Wang, G.; Elsworth, D. Predicting fugitive gas emissions from gob-to-face in longwall coal mines: Coupled analytical and numerical modeling. Int. J. Heat Mass. Transf. 2020, 150, 119392. [Google Scholar] [CrossRef]
- Ma, W.; Ji, X.; Ding, L.; Yang, S.X.; Guo, K.; Li, Q. Automatic Monitoring Methods for Greenhouse and Hazardous Gases Emitted from Ruminant Production Systems: A Review. Sensors 2024, 24, 4423. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.; Mehana, M.; Matheou, G.; Viswanathan, H. Deep Learning-Based quantifications of methane emissions with field applications. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104018. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Kalisz, P.; Słota, M.; Rudzki, A. Detection of natural gas leakages using a laser-based methane sensor and UAV. Remote Sens. 2021, 13, 510. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ. 2023, 893, 164701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, E. Risk identification for coal and gas outburst in underground coal mines: A critical review and future directions. Gas Sci. Eng. 2023, 118, 205106. [Google Scholar] [CrossRef]
- Anani, A.; Adewuyi, S.O.; Risso, N.; Nyaaba, W. Advancements in machine learning techniques for coal and gas outburst prediction in underground mines. Int. J. Coal Geol. 2024, 285, 104471. [Google Scholar] [CrossRef]
- Wen, H.; Yan, L.; Jin, Y.; Wang, Z.; Guo, J.; Deng, J. Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning. Energy 2023, 264, 126208. [Google Scholar] [CrossRef]
- Nie, Z.; Ma, H.; Zhang, Y. Research on Gaussian Plume Model of Gas Diffusion in Coal Mine Roadway Based on BP Neural Network Optimized by Genetic Algorithm. IOP Conf. Ser. Earth Environ. Sci. 2020, 526, 012158. [Google Scholar] [CrossRef]
- Guo, R.; Xu, G. Research on coal mine gas concentration multi-sensor prediction model based on information fusion and GA-SVM. China Saf. Sci. J. 2013, 23, 34–38. [Google Scholar]
- Luo, Z.; Zhai, H.; Tong, J. Incorporating multi-features and XGBoost algorithm for gas concentration prediction. China Min. Mag. 2024, 33 (Suppl. S1), 359–363, 370. [Google Scholar] [CrossRef]
- Fu, H.; Liu, Y.Z.; Xu, N.; Zhang, J.N. Research on gas concentration prediction based on multi-sensor-deep long short-term memory network fusion. Chin. J. Sens. Actuators 2021, 34, 784–790. [Google Scholar]
- Li, W.; Wang, G.G.; Gandomi, A.H. A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, L.; Laili, Y. Configurable Intelligent Optimization Algorithm; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Su, Z.; Wang, J.; Lu, H.; Zhao, G. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. 2014, 85, 443–452. [Google Scholar] [CrossRef]
- Cheng, S.; Qin, Q.; Chen, J.; Zhao, G. Brain storm optimization algorithm: A review. Artif. Intell. Rev. 2016, 46, 445–458. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Müller, A.J.; Michell, R.M.; Pérez, R.A.; Lorenzo, A.T. Successive Self-nucleation and Annealing (SSA): Correct design of thermal protocol and applications. Eur. Polym. J. 2015, 65, 132–154. [Google Scholar] [CrossRef]
- Khalid, O.W.; Isa, N.A.M.; Sakim, H.A.M. Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms. Alex. Eng. J. 2023, 63, 487–526. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, K.; Xue, Y.; Tang, W.; Salehnia, T. A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms. Expert Syst. Appl. 2024, 241, 122316. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, Y. Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization. J. Supercomput. 2022, 78, 10950–10996. [Google Scholar] [CrossRef]
- Niu, P.; Niu, S.; Chang, L. The defect of the Grey Wolf optimization algorithm and its verification method. Knowl.-Based Syst. 2019, 171, 37–43. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Hu, X.; Qiu, L.; Zang, H. Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar] [CrossRef]
- Pandey, H.M.; Chaudhary, A.; Mehrotra, D. A comparative review of approaches to prevent premature convergence in GA. Appl. Soft Comput. 2014, 24, 1047–1077. [Google Scholar] [CrossRef]
- Evers, G.I. An Automatic Regrouping Mechanism to Deal with Stagnation in Particle Swarm Optimization. Master’s Thesis, The University of Texas-Pan American, Edinburg, TX, USA, 2009. [Google Scholar]
- Song, Z.; Ren, C.; Meng, Z. Differential Evolution with perturbation mechanism and covariance matrix based stagnation indicator for numerical optimization. Swarm Evol. Comput. 2024, 84, 101447. [Google Scholar] [CrossRef]
- Ye, H.; Dong, J. An ensemble algorithm based on adaptive chaotic quantum-behaved particle swarm optimization with weibull distribution and hunger games search and its financial application in parameter identification. Appl. Intell. 2024, 54, 6888–6917. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Xu, M.; Tang, M.; Wu, T.; Cai, S. Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection. Expert Syst. Appl. 2022, 202, 117255. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.B. Enhanced chimp hierarchy optimization algorithm with adaptive lens imaging for feature selection in data classification. Sci. Rep. 2024, 14, 6910. [Google Scholar] [CrossRef] [PubMed]
- Soukarieh, I.; Bouzebda, S. Weak convergence of the conditional U-statistics for locally stationary functional time series. Stat. Inference Stoch. Process. 2024, 27, 227–304. [Google Scholar] [CrossRef]
- Feng, S.; Miao, C.; Zhang, Z.; Zhao, P. Latent diffusion transformer for probabilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence 2024, Vancouver, BC, Cananda, 20–27 February 2024; Volume 38, pp. 11979–11987. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, M.; Li, Z.; Huang, Z.; Liu, Q.; Xie, Y.; Chen, E. Adaptive normalization for non-stationary time series forecasting: A temporal slice perspective. Adv. Neural Inf. Process. Syst. 2024, 36. [Google Scholar]
- Anggraeni, W.; Yuniarno, E.M.; Rachmadi, R.F.; Sumpeno, S.; Pujiadi, P.; Sugiyanto, S.; Santoso, J.; Purnomo, M.H. A hybrid EMD-GRNN-PSO in intermittent time-series data for dengue fever forecasting. Expert Syst. Appl. 2024, 237, 121438. [Google Scholar] [CrossRef]
- Bas, E.; Egrioglu, E.; Cansu, T. Robust training of median dendritic artificial neural networks for time series forecasting. Expert Syst. Appl. 2024, 238, 122080. [Google Scholar] [CrossRef]
- Macedo, P. A two-stage maximum entropy approach for time series regression. Commun. Stat.-Simul. Comput. 2024, 53, 518–528. [Google Scholar] [CrossRef]
- Tol, R.S.J.; de Vos, A.F. Greenhouse statistics-time series analysis. Theor. Appl. Climatol. 1993, 48, 63–74. [Google Scholar] [CrossRef]
- Fuller, W.A. Introduction to Statistical Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Soni, K.; Parmar, K.S.; Kapoor, S. Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environ. Sci. Pollut. Res. 2015, 22, 3652–3671. [Google Scholar] [CrossRef] [PubMed]
- Islamov, S.R.; Bondarenko, A.V.; Korobov, G.Y.; Podoprigora, D.G. Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs. Int. J. Civ. Eng. Technol 2019, 10, 2697–2713. [Google Scholar]
- Mardashov, D.; Islamov, S.; Nefedov, Y. Specifics of well killing technology during well service operation in complicated conditions. Period. Tche Quim. 2020, 17, 782–792. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, Y.; Li, B.; He, S.; Song, J. A hybrid algorithm for predicting the remaining service life of hybrid bearings based on bidirectional feature extraction. Measurement 2024, 242, 116152. [Google Scholar] [CrossRef]
- Xie, J.; He, J.; Gao, Z.; Wang, S.; Liu, J.; Fan, H. An enhanced snow ablation optimizer for UAV swarm path planning and engineering design problems. Heliyon 2024, 10, e37819. [Google Scholar] [CrossRef]
- Cao, L.C.; Luo, Y.L.; Qiu, S.H.; Liu, J.X. A perturbation method to the tent map based on Lyapunov exponent and its application. Chin. Phys. B 2015, 24, 100501. [Google Scholar] [CrossRef]
- Naanaa, A. Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization. Appl. Math. Comput. 2015, 269, 402–411. [Google Scholar] [CrossRef]
- Wang, C.; Chen, N.; Heidrich, W. do: A differentiable engine for deep lens design of computational imaging systems. IEEE Trans. Comput. Imaging 2022, 8, 905–916. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Y.; Fan, Y. Research on Vegetable Commodity Price Prediction with Improved Lstm Based on Emd Decomposition and iCHOA Optimization. In Proceedings of the 2023 5th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Hangzhou, China, 15–17 December 2023; pp. 153–157. [Google Scholar] [CrossRef]
- Cao, S.; Ozbulut, O.E.; Dang, X.; Tan, P. Experimental and numerical investigations on adaptive stiffness double friction pendulum systems for seismic protection of bridges. Soil Dyn. Earthq. Eng. 2024, 176, 108302. [Google Scholar] [CrossRef]
- Akan, A.; Chaparro, L.F. Signals and Systems Using Matlab®; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Xue, Y.; Guan, S.; Jia, W. BGformer: An improved Informer model to enhance blood glucose prediction. J. Biomed. Inform. 2024, 157, 104715. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, X.; Zhang, F.; Gao, L.; Hao, B. A novel ultra-short-term wind power forecasting method based on TCN and Informer models. Comput. Electr. Eng. 2024, 120, 109632. [Google Scholar] [CrossRef]
- Tan, Q.; Xue, G.; Xie, W. Short-term heating load forecasting model based on SVMD and improved informer. Energy 2024, 312, 133535. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Wang, J.; Pan, J. Segmented sequence decomposition-Informer model for deformation of arch dams. Struct. Health Monit. 2024, 23, 3007–3025. [Google Scholar] [CrossRef]
- Alizadegan, H.; Rashidi, M.B.; Radmehr, A.; Karimi, H.; Ilani, M.A. Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction. Energy Explor. Exploit. 2024, 146. [Google Scholar] [CrossRef]
- Jamshidzadeh, Z.; Ehteram, M.; Shabanian, H. Bidirectional Long Short-Term Memory (BILSTM)-Support Vector Machine: A new machine learning model for predicting water quality parameters. Ain Shams Eng. J. 2024, 15, 102510. [Google Scholar] [CrossRef]
- Conrad, B.M.; Tyner, D.R.; Johnson, M.R. Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies. Remote Sens. Environ. 2023, 288, 113499. [Google Scholar] [CrossRef]
- Feitz, A.; Schroder, I.; Phillips, F.; Coates, T.; Negandhi, K.; Day, S.; Luhar, A.; Bhatia, S.; Edwards, G.; Hrabar, S. The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques. Int. J. Greenh. Gas Control 2018, 70, 202–224. [Google Scholar] [CrossRef]
- Van Thieu, N.; Mirjalili, S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python. J. Syst. Archit. 2023, 139, 102871. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, H.; Liu, C.; Xu, X.; Wang, Y.; Liu, J. Spontaneous coal combustion temperature prediction based on an improved grey wolf optimizer-gated recurrent unit model. Energy 2025, 314, 133980. [Google Scholar] [CrossRef]
- Acampora, G.; Chiatto, A.; Vitiello, A. Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm. Appl. Soft Comput. 2023, 142, 110296. [Google Scholar] [CrossRef]
- Goodarzian, F.; Ghasemi, P.; Gonzalez, E.D.R.S.; Tirkolaee, E.B. A sustainable-circular citrus closed-loop supply chain configuration: Pareto-based algorithms. J. Environ. Manag. 2023, 328, 116892. [Google Scholar] [CrossRef] [PubMed]
- Vierra, A.; Razzaq, A.; Andreadis, A. Continuous variable analyses: T-test, Mann–Whitney U, Wilcoxon sign rank. In Translational Surgery; Academic Press: Cambridge, MA, USA, 2023; pp. 165–170. [Google Scholar]
- Riina, M.D.; Stambaugh, C.; Stambaugh, N.; Huber, K.E. Continuous variable analyses: T-test, Mann–Whitney, Wilcoxin rank. In Translational Radiation Oncology; Academic Press: Cambridge, MA, USA, 2023; pp. 153–163. [Google Scholar] [CrossRef]
Function Expression (Math.) | Type | Dimension | Search Space | Optimal Value |
---|---|---|---|---|
single-peak | 10 | [−100, 100] | 0 | |
multimodal | 10 | [−10, 10] | 0 | |
multimodal | 10 | [−100, 100] | 0 | |
single-peak | 10 | [−100, 100] | 0 | |
multimodal | 10 | [−30, 30] | 0 | |
single-peak | 10 | [−100, 100] | 0 | |
multimodal | 10 | [−1.28, 1.28] | 0 | |
single-peak | 10 | [−500, 500] | −1.8732 | |
single-peak | 10 | [−5.12, 5.12] | 0 | |
single-peak | 10 | [−32, 32] | 0 | |
multimodal | 10 | [−600, 600] | 0 | |
multimodal | 10 | [−50, 50] | 0 |
Benchmark Functions | e = 0.6 | e = 0.7 | e = 0.8 | e = 0.9 | e = 0.6 | e = 0.7 | e = 0.8 | e = 0.9 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w = 2 | w = 4 | w = 2 | w = 4 | w = 2 | w = 4 | w = 2 | w = 4 | w = 3 | w = 5 | w = 3 | w = 5 | w = 3 | w = 5 | w = 3 | w = 5 | |
F1 | 2.98 | 0 | 18.02 | 5.6 | 18.1 | 7.8 | 5.6 | 1.3 | 0.29 | 4.1 | 2.31 | 4.17 | 2.1 | 7.8 | 2.9 | 9.9 |
F2 | 2.34 | 2.15 | 7.1 | 5.23 | 4.66 | 5.63 | 1.26 | 4.99 | 2.41 | 8.94 | 3.45 | 5.23 | 4.89 | 9.42 | 0 | 1.67 |
F3 | 7.68 | 7.65 | 2.49 | 4.67 | 2.88 | 8.46 | 5.8 | 6.22 | 0 | 5.27 | 7.08 | 2.44 | 2.65 | 7.19 | 7.56 | 4.56 |
F4 | 5.9 | 0.4 | 5.33 | 8.91 | 5.14 | 2.95 | 0.63 | 1.78 | 2.9 | 1.73 | 2.31 | 9.67 | 7.41 | 5.78 | 4.31 | 6.23 |
F5 | 3.25 | 3.38 | 8.67 | 3.55 | 0.72 | 15.0 | 8.31 | 1.78 | 0 | 3.12 | 9.64 | 3.82 | 0.83 | 3.3 | 2.74 | 4.32 |
F6 | 1.07 | 0 | 0.94 | 1.72 | 8.29 | 4.18 | 2.19 | 2.54 | 0.31 | 9.86 | 4.82 | 1.15 | 9.17 | 7.31 | 5.99 | 7.81 |
F7 | 8.41 | 6.71 | 14.28 | 6.48 | 1.37 | 6.7 | 6.67 | 7.09 | 0 | 7.45 | 1.57 | 4.96 | 4.29 | 8.46 | 8.99 | 4.12 |
F8 | 4.79 | 8.29 | 1.75 | 2.01 | 6.43 | 1.03 | 9.04 | 3.83 | 3.21 | 0.59 | 6.39 | 9.87 | 5.64 | 4.01 | 5.21 | 8.71 |
F9 | 9.23 | 4.65 | 6.32 | 7.34 | 9.91 | 3.35 | 3.22 | 5.47 | 2.1 | 6.81 | 0.24 | 5.99 | 3.1 | 6.73 | 0 | 6.39 |
F10 | 0.56 | 0 | 9.8 | 9.19 | 3.5 | 7.82 | 7.89 | 5.21 | 0 | 4.37 | 8.81 | 0.34 | 8.72 | 5.63 | 4.88 | 3.49 |
F11 | 6.12 | 7.03 | 3.05 | 4.86 | 7.78 | 8.14 | 8.17 | 2.88 | 0.71 | 2.18 | 5.13 | 5.55 | 1.45 | 0.93 | 9.32 | 6.21 |
F12 | 3.87 | 5.46 | 7.51 | 3.2 | 4.49 | 3.66 | 1.74 | 7.99 | 3.27 | 8.04 | 3.76 | 2.67 | 6.28 | 5.09 | 2.15 | 6.87 |
Benchmark Functions | Algorithms | Best | Mean | Std | Benchmark Functions | Algorithms | Best | Mean | Std |
---|---|---|---|---|---|---|---|---|---|
F1 | BKA1 | 2.78 × 10−21 | 2.05 × 10−28 | 2.87 × 10−20 | F7 | BKA1 | 4.94 × 10−21 | 3.92 × 10−26 | 2.87 × 10−23 |
BKA2 | 4.62 × 10−27 | 3.53 × 10−28 | 2.18 × 10−27 | BKA2 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | ||
BKA3 | 3.79 × 10−28 | 2.85 × 10−26 | 4.96 × 10−23 | BKA3 | 1.49 × 10−25 | 3.47 × 10−24 | 2.7 × 10−30 | ||
BKA | 4.86 × 10−28 | 4.89 × 10−21 | 3.93 × 10−23 | BKA | 2.7 × 10−21 | 4.64 × 10−24 | 4.76 × 10−29 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | ||
F2 | BKA1 | 1.79 × 10−27 | 4.19 × 10−26 | 4.78 × 10−26 | F8 | BKA1 | −1.87 × 10−12 | −1.9 × 10−12 | 4.27 × 10−22 |
BKA2 | 4.9 × 10−21 | 2.64 × 10−27 | 1.61 × 10−24 | BKA2 | −1.9 × 10−12 | −1.9 × 10−12 | 4.59 × 10−28 | ||
BKA3 | 3.79 × 10−21 | 4.08 × 10−21 | 4.63 × 10−23 | BKA3 | −1.9 × 10−12 | −1.9 × 10−12 | 4.64 × 10−23 | ||
BKA | 1.9 × 10−26 | 1.46 × 10−21 | 4.49 × 10−20 | BKA | −1.9 × 10−12 | −1.9 × 10−12 | 1.91 × 10−27 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | −1.9 × 10−12 | −1.9 × 10−12 | 2.91 × 10−27 | ||
F3 | BKA1 | 1.04 × 10−21 | 2.05 × 10−25 | 4.83 × 10−22 | F9 | BKA1 | 3.45 × 10−28 | 2.28 × 10−22 | 1.52 × 10−30 |
BKA2 | 4.2 × 10−23 | 2.81 × 10−23 | 4.07 × 10−30 | BKA2 | 4.45 × 10−25 | 1.42 × 10−29 | 2.31 × 10−27 | ||
BKA3 | 3.97 × 10−30 | 2.26 × 10−25 | 1.08 × 10−24 | BKA3 | 2.34 × 10−26 | 4.05 × 10−21 | 3.04 × 10−23 | ||
BKA | 2.43 × 10−20 | 1.41 × 10−25 | 2.58 × 10−23 | BKA | 1.93 × 10−20 | 3.29 × 10−26 | 3.07 × 10−27 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | ||
F4 | BKA1 | 4.17 × 10−27 | 4.16 × 10−25 | 3.26 × 10−27 | F10 | BKA1 | 3.62 × 10−21 | 3.39 × 10−25 | 2.67 × 10−23 |
BKA2 | 3.72 × 10−25 | 3.25 × 10−25 | 1.87 × 10−28 | BKA2 | 4.42 × 10−21 | 3.96 × 10−25 | 1.33 × 10−24 | ||
BKA3 | 2.58 × 10−22 | 4.86 × 10−29 | 2.35 × 10−22 | BKA3 | 3.17 × 10−22 | 2.8 × 10−25 | 2.24 × 10−24 | ||
BKA | 1.32 × 10−22 | 4.01 × 10−21 | 1.23 × 10−30 | BKA | 3.09 × 10−28 | 1.35 × 10−30 | 3.78 × 10−21 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | ||
F5 | BKA1 | 2.06 × 10−26 | 1.57 × 10−23 | 1.71 × 10−21 | F11 | BKA1 | 1.26 × 10−22 | 1.38 × 10−23 | 4.35 × 10−27 |
BKA2 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | BKA2 | 3.63 × 10−22 | 3.23 × 10−22 | 1.13 × 10−30 | ||
BKA3 | 4.26 × 10−26 | 4.98 × 10−21 | 3.27 × 10−26 | BKA3 | 4.62 × 10−25 | 1.62 × 10−27 | 3.59 × 10−22 | ||
BKA | 2.62 × 10−28 | 4.62 × 10−21 | 1.23 × 10−21 | BKA | 1.72 × 10−21 | 4.42 × 10−30 | 1.23 × 10−24 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | ||
F6 | BKA1 | 3.21 × 10−29 | 4.47 × 10−29 | 1.4 × 10−29 | F12 | BKA1 | 1.76 × 10−28 | 1.68 × 10−25 | 3.22 × 10−23 |
BKA2 | 2.12 × 10−24 | 1.17 × 10−22 | 4.95 × 10−28 | BKA2 | 1.23 × 10−27 | 3.74 × 10−25 | 1.3 × 10−20 | ||
BKA3 | 2.71 × 10−22 | 3.02 × 10−30 | 1.91 × 10−21 | BKA3 | 3.93 × 10−30 | 3.02 × 10−29 | 4.35 × 10−24 | ||
BKA | 3.09 × 10−29 | 3.98 × 10−26 | 3.15 × 10−28 | BKA | 3.14 × 10−22 | 4.21 × 10−25 | 1.74 × 10−20 | ||
IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 |
Benchmark Functions | Algorithms | Best | Mean | Std | Benchmark Functions | Algorithms | Best | Mean | Std |
---|---|---|---|---|---|---|---|---|---|
F1 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | F7 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 |
PSO | 2.78 × 10+00 | 2.16 × 10−5 | 1.9 × 10−8 | PSO | 7.99 × 10−11 | 1.33 × 10−2 | 3.23 × 10−1 | ||
SSA | 7.46 × 10−9 | 4.81 × 10−5 | 3.1 × 10−7 | SSA | 1.96 × 10−0 | 2.04 × 10−0 | 4.84 × 10−3 | ||
SCSO | 5.65 × 10−13 | 2.25 × 10−10 | 4.69 × 10−2 | SCSO | 8.04 × 10−8 | 4.66 × 10−7 | 3.24 × 10−2 | ||
GWO | 9.34 × 10−16 | 4.47 × 10−9 | 3.72 × 10−2 | GWO | 6.2 × 10−2 | 2.61 × 10−6 | 1.73 × 10−0 | ||
SFO | 8.61 × 10−16 | 3.77 × 10−2 | 1.54 × 10−8 | SFO | 8.43 × 10−12 | 3.3 × 10−9 | 2.35 × 10−6 | ||
F2 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | F8 | IBKA | −1.87 × 10−12 | −1.87 × 10−12 | 1.38 × 10−10 |
PSO | 9.11 × 10−3 | 3.36 × 10−6 | 2.91 × 10−3 | PSO | 4.43 × 10−3 | −1.87 × 10−12 | 4.46 × 10−8 | ||
SSA | 9.13 × 10−8 | 3.73 × 10−8 | 4.22 × 10−0 | SSA | −1.87 × 10−12 | −1.87 × 10−12 | 1.84 × 10−1 | ||
SCSO | 9.66 × 10−7 | 1.97 × 10−10 | 2.4 × 10−8 | SCSO | −1.87 × 10−12 | 3 × 10−0 | 2.66 × 10−0 | ||
GWO | 6.11 × 10−5 | 1.71 × 10−9 | 3.21 × 10−3 | GWO | 4.92 × 10−8 | 2.16 × 10−6 | 4.02 × 10−10 | ||
SFO | 8.56 × 10−5 | 4.83 × 10−9 | 1.07 × 10−3 | SFO | −1.87 × 10−12 | 2.98 × 10−3 | 4.2 × 10−0 | ||
F3 | IBKA | 1.95 × 10−30 | 2.89 × 10−20 | 1.8 × 10−20 | F9 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 |
PSO | 6.99 × 10−10 | 1.11 × 10−9 | 1.81 × 10−7 | PSO | 9.49 × 10−18 | 2.43 × 10−5 | 2.12 × 10−2 | ||
SSA | 6.56 × 10−13 | 1.9 × 10−8 | 1.65 × 10−10 | SSA | 5.27 × 10−10 | 3.34 × 10−4 | 2.69 × 10−5 | ||
SCSO | 7.76 × 10−6 | 4.67 × 10−1 | 4.35 × 10−5 | SCSO | 8.74 × 10−4 | 1.35 × 10−4 | 4.86 × 10−9 | ||
GWO | 7.72 × 10−11 | 2 × 10−6 | 1.21 × 10−9 | GWO | 6.39 × 10−12 | 4.92 × 10−9 | 1.38 × 10−10 | ||
SFO | 3.16 × 10−3 | 4.46 × 10−1 | 1.11 × 10−0 | SFO | 6.87 × 10−1 | 2.04 × 10−9 | 3.37 × 10−0 | ||
F4 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | F10 | IBKA | 4.89 × 10−25 | 4.61 × 10−24 | 2.41 × 10−26 |
PSO | 1.98 × 10−10 | 1.08 × 10−9 | 2.73 × 10−5 | PSO | 5.28 × 10−16 | 4.82 × 10−6 | 1.24 × 10−2 | ||
SSA | 3.04 × 10−9 | 2.84 × 10−10 | 2.24 × 10−7 | SSA | 5.75 × 10−6 | 1.7 × 10−9 | 2.14 × 10−10 | ||
SCSO | 8.26 × 10−16 | 3.76 × 10−5 | 1.48 × 10−7 | SCSO | 8.71 × 10−4 | 3.24 × 10−2 | 1.5 × 10−5 | ||
GWO | 8.6 × 10−12 | 2.84 × 10−0 | 4.33 × 10−9 | GWO | 5.83 × 10−20 | 1.7 × 10−7 | 4.33 × 10−10 | ||
SFO | 3.57 × 10−9 | 2.1 × 10−8 | 4.08 × 10−10 | SFO | 8.29 × 10−14 | 4.3 × 10−7 | 2.32 × 10−6 | ||
F5 | IBKA | 4.81 × 10−24 | 2.62 × 10−27 | 1.87 × 10−21 | F11 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 |
PSO | 2.48 × 10−14 | 2.98 × 10−6 | 1.33 × 10−7 | PSO | 8.9 × 10−7 | 2.86 × 10−1 | 2.9 × 10−10 | ||
SSA | 3.06 × 10−11 | 1.8 × 10−5 | 4.46 × 10−9 | SSA | 5.99 × 10−20 | 2.71 × 10−2 | 3.45 × 10−0 | ||
SCSO | 5.26 × 10−19 | 2.79 × 10−7 | 2.05 × 10−1 | SCSO | 8.03 × 10−8 | 2.62 × 10−9 | 3.29 × 10−4 | ||
GWO | 6.63 × 10−19 | 4.66 × 10−3 | 1.9 × 10−5 | GWO | 9.32 × 10−13 | 4.01 × 10−5 | 2.82 × 10−10 | ||
SFO | 1.55 × 10−16 | 1.58 × 10−8 | 2.82 × 10−0 | SFO | 3.85 × 10−12 | 4.9 × 10−1 | 2.21 × 10−10 | ||
F6 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | F12 | IBKA | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 |
PSO | 5.85 × 10−1 | 2.5 × 10−5 | 4.42 × 10−7 | PSO | 5.75 × 10−5 | 3.05 × 10−6 | 4.45 × 10−3 | ||
SSA | 6.96 × 10−7 | 3.56 × 10−6 | 2.62 × 10−4 | SSA | 5.08 × 10−7 | 2.95 × 10−5 | 2.09 × 10−3 | ||
SCSO | 2.06 × 10−8 | 1.24 × 10−9 | 2.04 × 10−8 | SCSO | 5.11 × 10−2 | 4.34 × 10−9 | 1.06 × 10−3 | ||
GWO | 8.14 × 10−8 | 4.36 × 10−1 | 1.71 × 10−10 | GWO | 1.39 × 10−6 | 1.64 × 10−7 | 3.37 × 10−7 | ||
SFO | 8.82 × 10−4 | 4.83 × 10−2 | 1.02 × 10−5 | SFO | 7.89 × 10−6 | 1.32 × 10−6 | 2.54 × 10−10 |
Benchmark Functions | p1 | p2 | p3 | Benchmark Functions | p1 | p2 | p3 |
---|---|---|---|---|---|---|---|
F1 | 1.8 × 10−11 | 1.81 × 10−11 | 1.02 × 10−11 | F7 | 1.6 × 10−12 | 1.39 × 10−12 | 1.99 × 10−11 |
F2 | 1.61 × 10−12 | 2 × 10−12 | 1.09 × 10−12 | F8 | 1.4 × 10−12 | 1.29 × 10−12 | 1.88 × 10−12 |
F3 | 1.46 × 10−11 | 1.38 × 10−11 | NA | F9 | 1.8 × 10−12 | 1.45 × 10−12 | 1.91 × 10−12 |
F4 | NA | 1.12 × 10−11 | 1.75 × 10−11 | F10 | 1.57 × 10−12 | NA | 1.79 × 10−12 |
F5 | 1.7 × 10−11 | 1.48 × 10−11 | 1.71 × 10−11 | F11 | 1.54 × 10−11 | 1.5 × 10−11 | 1.65 × 10−11 |
F6 | NA | NA | 1.61 × 10−11 | F12 | 1.4 × 10−12 | 1.28 × 10−12 | 1.55 × 10−12 |
Models | Hyperparameters | Range of Values | Optimal Values |
---|---|---|---|
Informer | d_model | 128–512 | 512 |
n_heads | 4–8 | 6 | |
e_layers | 2–6 | 6 | |
learning_rete | 0.1–0.00001 | 0.0001 | |
BiLSTM | units | 64–512 | 120 |
L2 | 0–1 | 0.0099 | |
learning_rete | 0.1–0.00001 | 0.0001 |
Models | Hyperparameters |
---|---|
Informer-BiLSTM | d_model: 512, n_heads: 6, e_layers: 2, d_layers: 1, dropout: 0.01, learning_rete: 0.0001, batch_size: 64, activation: geluunits: 120, batch_size: 64, optimizer: adam, L2: 0.0099 |
LSTM | units: 100, batch_size: 64, optimizer: adam |
BiLSTM | units: 120, batch_size: 64, optimizer: adam |
Informer | d_model: 512, n_heads: 6, e_layers: 2, d_layers: 1, dropout: 0.01, learning_rete: 0.001, batch_size: 64, activation: gelu |
Autoformer | d_model: 512, n_heads: 6, e_layers: 2, d_layers: 1, moving_avg: 30, dropout: 0.01, learning_rete: 0.001, batch_size: 64, activation: gelu |
LR | fit_intercept: true, normalize: true, n_jobs: −1 |
XGBoost | subsample: 0.6, max_depth: 14, learning_rate: 0.1, gamma: 12 |
Models | MAE | MAPE/% | RMSE | R2 | ||||
---|---|---|---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | |
Informer-BiLSTM | 0.00067624 | 0.0005971 | 1.9051 | 2.3898 | 0.00088187 | 0.0008005 | 0.9769 | 0.9589 |
LSTM | 0.0069127 | 0.00060211 | 2.2451 | 2.7528 | 0.0009821 | 0.00079311 | 0.9491 | 0.9013 |
BiLSTM | 0.0068513 | 0.00067251 | 2.1261 | 2.5611 | 0.00099183 | 0.00071823 | 0.9456 | 0.9112 |
Informer | 0.006981 | 0.00062999 | 2.1890 | 2.5503 | 0.00095091 | 0.00075913 | 0.9581 | 0.9387 |
Autoformer | 0.007213 | 0.0007842 | 2.3881 | 2.7391 | 0.0018991 | 0.00087313 | 0.9291 | 0.8912 |
LR | 0.008371 | 0.0008271 | 2.4913 | 2.7814 | 0.0019311 | 0.00083121 | 0.923 | 0.9021 |
XGBoost | 0.007361 | 0.0008000 | 2.3831 | 2.4951 | 0.001257 | 0.00064141 | 0.9387 | 0.9284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Shao, X.; Gao, H.; Chen, Q.; Guang, J.; Liu, C. A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory. Processes 2025, 13, 205. https://doi.org/10.3390/pr13010205
Qu H, Shao X, Gao H, Chen Q, Guang J, Liu C. A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory. Processes. 2025; 13(1):205. https://doi.org/10.3390/pr13010205
Chicago/Turabian StyleQu, Hu, Xuming Shao, Huanqi Gao, Qiaojun Chen, Jiahe Guang, and Chun Liu. 2025. "A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory" Processes 13, no. 1: 205. https://doi.org/10.3390/pr13010205
APA StyleQu, H., Shao, X., Gao, H., Chen, Q., Guang, J., & Liu, C. (2025). A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory. Processes, 13(1), 205. https://doi.org/10.3390/pr13010205