A Study on Production of Canned Minced Chicken and Pork and Formation of Heterocyclic Amines During Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Raw Material
2.2. Experiment Design for Processing of Canned Minced Pork and Chicken
2.3. Extraction and Purification of HAs in Minced Chicken and Pork During Canning
2.4. Analysis of HAs in Raw, MN, SF, DG and ST Samples of Minced Chicken and Pork by UPLC-MS/MS
2.5. Matrix Effect, Method Validation and Quantitation of HAs in Raw Chicken and Pork
2.6. Determination of HA Precursors in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork
2.6.1. Creatine and Creatinine
2.6.2. Amino Acid
2.6.3. Reducing Sugar
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Raw, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.2. Analysis of HAs by UPLC-MS/MS in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.3. HA Content Changes in in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.4. Amino Acid Content Changes in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.5. Reducing Sugar Content Changes in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.6. Creatine and Creatinine Content Changes in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.7. Composition of Fatty Acid in Raw, MN, SF, DG and ST (LL–ST and HS–ST) Samples of Minced Chicken and Pork During Canning
3.8. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.Y.; Yim, D.G.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Jang, A.; Park, T.S.; Jin, S.K.; Hur, S.H. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci. Technol. 2020, 99, 568–579. [Google Scholar] [CrossRef]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.M.; Ranjha, M.M.A.N.; Jooste, L.; Hano, C.; Aadil, R.M. Heterocyclic aromatic amines in meat: Formation, isolation, risk assessment, and inhibitory effect of plant extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Oz, E.; Aoudeh, E.; Murkovic, M.; Toldra, F.; Gomez-Zavaglia, A.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. Heterocyclic aromatic amines in meat: Formation mechanisms, toxicological implications, occurrence, risk evaluation, and analytical methods. Meat Sci. 2023, 205, 109312. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.W.; Lee, Y.T.; Cao, H.; Zhang, H.L.; Chen, B.H. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem. 2023, 402, 134291. [Google Scholar] [CrossRef]
- Khan, M.R.; Naushad, M.; Alothman, Z.A.; Algamdi, M.S.; Alsohaimi, I.H.; Ghfar, A.A. Effect of natural food condiments on carcinogenic/mutagenic heterocyclic amines formation in thermally processed camel meat. J. Food Process. Preserv. 2017, 41, e12819. [Google Scholar] [CrossRef]
- Cheng, K.W.; Chen, F.; Wang, M. Heterocyclic amines: Chemistry and health. Mol. Nutr. Food Res. 2006, 50, 1150–1170. [Google Scholar] [CrossRef]
- IARC. IARC working group on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1–853. Available online: https://publications.iarc.fr/_publications/media/download/2841/a076b09df49aeeb8c7922378fe4f372fda3edd13.pdf (accessed on 20 June 2024).
- Adeyeye, S.A.O.; Ashaolu, T.J. Heterocyclic amine formation and mitigation in processed meat and meat products: A mini-review. J. Food Prot. 2021, 84, 1868–1877. [Google Scholar] [CrossRef]
- Lin, J.; Forman, M.R.; Wang, J.; Grossman, H.B.; Chen, M.; Dinney, C.P.; Hawk, E.T.; Wu, X. Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk. Int. J. Can. 2012, 131, 1892–1903. [Google Scholar] [CrossRef]
- Polak, T.; Došler, D.; Žlender, B.; Gašperlin, L. Heterocyclic amines in aged and thermally treated pork longissimus dorsi muscle of normal and PSE quality. LWT-Food Sci. Technol. 2009, 42, 504–513. [Google Scholar] [CrossRef]
- Oz, F.; Kaban, G.; Kaya, M. Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with Oasis extraction method. LWT-Food Sci. Technol. 2010, 43, 1345–1350. [Google Scholar] [CrossRef]
- Tsao, W.X.; Chen, B.H.; Kao, T.H. Effect of sterilization conditions on the formation of furan and its derivatives in canned foods with different substrates. J. Food Drug Anal. 2022, 30, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, B.S.; Lai, Y.W.; Chen, B.H. Analysis and formation of polycyclic aromatic hydrocarbons in canned minced chicken and pork during processing. Molecules 2024, 29, 4372. [Google Scholar] [CrossRef] [PubMed]
- Gibis, M.; Loeffler, M. Effect of creatine and glucose on formation of heterocyclic amines in grilled chicken breasts. Foods 2019, 8, 616. [Google Scholar] [CrossRef] [PubMed]
- TFDA. Taiwan Food and Drug Administration. Method of Test for Free Amino Acids, Glucosamine and Taurine in Foods. TFDAA0060.00. 2017. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694185703215754 (accessed on 20 June 2024).
- Chen, Y.; Chien, J.; Inbaraj, B.S.; Chen, B.H. Formation and inhibition of cholesterol oxidation products during marinating of pig feet. J. Agric. Food Chem. 2012, 60, 173–179. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS® 9.4 Output Delivery System: User’s Guide, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 2019. [Google Scholar]
- TFDA. Taiwan Food and Drug Administration. Analytical Method Validation in Food Chemistry. 2021. Available online: https://www.fda.gov.tw/tc/siteList.aspx?sid=4115 (accessed on 20 May 2024).
- Lan, C.M.; Chen, B.H. Effects of soy sauce and sugar on the formation of heterocyclic amines in marinated foods. Food Chem. Toxicol. 2002, 40, 989–1000. [Google Scholar] [CrossRef]
- Herraiz, T. Relative exposure to β-carbolines norharman and harman from foods and tobacco smoke. Food Addit. Contamin. 2004, 21, 1041–1050. [Google Scholar] [CrossRef]
- Chiu, C.; Chen, B.H. Stability of heterocyclic amines during heating. Food Chem. 2000, 68, 267–272. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid Oxidation; The Oily Press Ltd.: Dundee, Scotland, 1998. [Google Scholar]
- Min, B.; Nam, K.; Cordray, J.; Ahn, D. Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. J. Food Sci. 2008, 73, C439–C446. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; Shi, L.; Cui, Z.; Li, Y. Degradation of β-carbolines harman and norharman in edible oils during heating. Molecules 2021, 26, 7018. [Google Scholar] [CrossRef]
- Yao, Y.; Peng, Z.; Wan, K.; Shao, B.; Shi, J.; Zhang, Y.W.; Wang, F.L.; Hui, T. Determination of heterocyclic amines in braised sauce beef. Food Chem. 2013, 141, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Lee, S.Y.; Lee, D.Y.; Kang, J.H.; Kim, J.H.; Kim, H.W.; Jeong, J.W.; Oh, D.H.; Hur, S.J. Study on the reduction of heterocyclic amines by marinated natural materials in pork belly. J. Anim. Sci. Technol. 2022, 64, 1245–1258. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Lin, S.; Yuan, Y.; Zhang, S.; Zhang, S. Effects of quercetin and l-ascorbic acid on heterocyclic amines and advanced glycation end products production in roasted eel and lipid-mediated inhibition mechanism analysis. Food Chem. 2024, 441, 138394. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Monser, L.; Sadok, S. The influence of local canning process and storage on pelagic fish from Tunisia: Fatty acid profiles and quality indicators. J. Food Process. Preserv. 2008, 32, 443–457. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M.; Moieni, S.; Hosseini, H.; Eskandari, S. Effects of different filling media on the oxidation and lipid quality of canned silver carp (Hypophthalmichthys molitrix). Int. J. Food Sci. Technol. 2011, 46, 1149–1156. [Google Scholar] [CrossRef]
- Gómez-Limia, L.; Sanmartín, N.M.; Carballo, J.; Domínguez, R.; Lorenzo, J.M.; Martínez, S. Oxidative stability and antioxidant activity in canned eels: Effect of processing and filling medium. Foods 2021, 10, 790. [Google Scholar] [CrossRef]
- Jing, M.; Jiang, Q.; Zhu, Y.; Fan, D.; Wang, M.; Zhao, Y. Effect of acrolein, a lipid oxidation product, on the formation of the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) in model systems and roasted tilapia fish patties. Food Chem. X 2022, 14, 100315. [Google Scholar] [CrossRef]
- Britt, C.; Gomaa, E.A.; Gray, J.I.; Booren, A.M. Influence of cherry tissue on lipid oxidation and heterocyclic aromatic amine formation in ground beef patties. J. Agric. Food Chem. 1998, 46, 4891–4897. [Google Scholar] [CrossRef]
- Cao, H.; Chen, B.H.; Inbaraj, B.S.; Chen, L.; Alvarez-Rivera, G.; Cifuentes, A.; Zhang, N.; Yang, D.J.; Simal-Gandara, J.; Wang, M.; et al. Preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic amines. Food Front. 2020, 1, 134–151. [Google Scholar] [CrossRef]
- Paluszkiewicz, P.; Smolińska, K.; Dębińska, I.; Turski, W.A. Main dietary compounds and pancreatic cancer risk. The quantitative analysis of case-control and cohort studies. Cancer Epidemiol. 2012, 36, 60–67. [Google Scholar] [CrossRef]
- Namiranian, N.; Moradi-Lakeh, M.; Razavi-Ratki, S.K.; Doayie, M.; Nojomi, M. Risk factors of breast cancer in the Eastern Mediterranean Region: A systematic review and meta-analysis. Asian Pacif. J. Cancer Prev. 2014, 15, 9535–9541. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, F.; Kamankesh, M.; Mohammadi, A. Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques. Food Chem. 2019, 280, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Iwasaki, M.; Haiman, C.A.; Kono, S.; Wilkens, L.R.; Keku, T.O.; Le Marchand, L. Interaction between red meat intake and NAT2 genotype in increasing the risk of colorectal cancer in Japanese and African Americans. PLoS ONE 2015, 10, e0144955. [Google Scholar] [CrossRef]
- Gibis, M. Heterocyclic aromatic amines in cooked meat products: Causes, formation, occurrence, and risk assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15, 269–302. [Google Scholar] [CrossRef]
- Budhathoki, S.; Iwasaki, M.; Yamaji, T.; Sasazuki, S.; Takachi, R.; Sakamoto, H.; Tsugane, S. Dietary heterocyclic amine intake, NAT2 genetic polymorphism, and colorectal adenoma risk: The colorectal adenoma study in Tokyo. Cancer Epidemiol. Biomark. Prev. 2015, 24, 613. [Google Scholar] [CrossRef]
- Farvid, M.S.; Stern, M.C.; Norat, T.; Sasazuki, S.; Vineis, P.; Weijenberg, M.P.; Cho, E. Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Int. J. Cancer 2018, 143, 2787–2799. [Google Scholar] [CrossRef]
- Andersen, V.; Halekoh, U.; Tjønneland, A.; Vogel, U.; Kopp, T. Intake of red and processed meat, use of non-steroid anti-inflammatory drugs, genetic variants and risk of colorectal cancer: A prospective study of the Danish “diet, cancer and health” cohort. Int. J. Mol. Sci. 2019, 20, 1121. [Google Scholar] [CrossRef]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- Zahir, A.; Khan, I.A.; Nasim, M.; Azizi, M.N.; Azi, F. Food process contaminants: Formation, occurrence, risk assessment and mitigation strategies—A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2024, 41, 1242–1274. [Google Scholar] [CrossRef]
- Adeyeye, S.A.O. Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Cooked Meat Products: A Review. Polycycl. Aromat. Compd. 2018, 40, 1557–1567. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Miranda, A.M.; Santos, F.A.; Loureiro, A.P.M.; Fisberg, R.M.; Marchioni, D.M. High intake of heterocyclic amines from meat is associated with oxidative stress. Brit. J. Nutr. 2015, 113, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Meurillon, M.; Engel, E. Mitigation strategies to reduce the impact of heterocyclic amines in proteinaceous foods. Trends Food Sci. Technol. 2016, 50, 70–84. [Google Scholar] [CrossRef]
- Hee, P.T.E.; Liang, Z.; Zhang, P.; Fang, Z. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Cont. 2024, 158, 110236. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, H.; Lv, X.; Lin, Q.; Chen, B.H.; Lai, Y.W.; Chen, L.; Teng, H.; Cao, H. The evaluation of catechins reducing heterocyclic aromatic amine formation: Structure-activity relationship and mechanism speculation. Curr. Res. Food Sci. 2024, 8, 100727. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Su, W.; Chen, B.H.; Lai, Y.W.; Xie, R.; Lin, Q.; Chen, L.; Cao, H. Exploring the roles of excess amino acids, creatine, creatinine, and glucose in the formation of heterocyclic aromatic amines by UPLC-MS/MS. Food Chem. 2024, 446, 138760. [Google Scholar] [CrossRef]
HA Compound | Retention Time (min) | Precursor ion (m/z) | Quantitation | Confirmation | ||
---|---|---|---|---|---|---|
Product ion (m/z) | Collision Energy (V) | Product ion (m/z) | Collision Energy (V) | |||
2-amino-1,6-dimethylimidazo [4,5-b]pyridine (DMIP) | 0.50 | 163.10 | 148.10 | 24 | 105.09 | 37 |
2-aminodipyrido-[1,2-a:3′,2′-d]imidazole (Glu-P-2) | 0.87 | 185.10 | 158.10 | 25 | 78.05 | 37 |
2-amino-1-methyl-imidazo[4,5-f]quinoline (iso-IQ) | 0.70 | 199.09 | 184.12 | 25 | 156.10 | 21 |
2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) | 0.81 | 199.10 | 184.12 | 27 | 157.00 | 29 |
2-amino-3-methyl-imidazo[4,5-f]quinoxaline (IQx) | 0.67 | 200.08 | 185.12 | 28 | 132.14 | 29 |
2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ) | 1.45 | 213.11 | 198.09 | 27 | 145.15 | 29 |
2-amino-6-methyldipyrido-[1,2-a:3′,2′-d]imidazole (Glu-P-1) | 2.15 | 199.10 | 92.10 | 36 | 172.14 | 26 |
2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (8-MeIQx) | 1.23 | 214.10 | 131.07 | 41 | 173.18 | 24 |
2-amino-1-methyl-imidazo[4,5-b]quinoline (IQ[4,5-b]) | 2.10 | 199.11 | 183.92 | 27 | 115.19 | 46 |
2-amino-1,6-dimethyl-furo[3,2-e]imidazo[4,5-b]pyridine (IFP) | 2.62 | 203.08 | 188.17 | 25 | 175.14 | 22 |
2-amino-3,7,8-trimethyl-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) | 2.51 | 228.10 | 131.13 | 40 | 187.15 | 25 |
2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) | 2.68 | 228.10 | 213.09 | 26 | 187.09 | 23 |
9H-pyrido[3,4-b]indole (Norharman) | 2.82 | 169.06 | 115.09 | 33 | 89.05 | 48 |
2-amino-3,4,7,8-tetramethyl-imidazo[4,5-f]quinoxaline (4,7,8TriMeIQx) (IS) | 2.82 | 242.13 | 145.09 | 42 | 201.21 | 26 |
1-methyl-9H-pyrido[3,4-b]indole (Harman) | 2.83 | 183.09 | 115.15 | 34 | 89.09 | 49 |
2-amino-5-phenylpyridine (Phe-P-1) | 3.02 | 171.09 | 127.13 | 30 | 154.07 | 21 |
3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) | 2.89 | 198.11 | 154.14 | 30 | 181.08 | 24 |
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) | 3.02 | 225.10 | 210.05 | 30 | 140.08 | 54 |
3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) | 2.95 | 212.12 | 195.14 | 24 | 168.09 | 30 |
2-amino-9H-pyrido[2,3-b]indole (AαC) | 3.13 | 184.07 | 140.13 | 33 | 167.07 | 24 |
2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) | 3.25 | 198.10 | 181.14 | 23 | 127.13 | 38 |
Raw | Marinated | Stir-Fried (10 min at 95 °C) | Degassed (15 min at 85 °C) | LL–ST (60 min at 115 °C) | HS–ST (25 min at 125 °C) | |
---|---|---|---|---|---|---|
Chicken | ||||||
DMIP | 1.94 ± 0.08 g | 22.15 ± 1.19 e | 34.01 ± 2.01 a | 24.79 ± 1.2 de | 35.02 ± 3.19 a | 25.75 ± 2.24 cde |
Glu-P-2 | nd 3 | nd | nd | nd | trace | trace |
8-MeIQx | nd | nd | nd | nd | 0.59 ± 0.01 a | 0.61 ± 0.02 a |
IQ[4,5-b] | nd | nd | nd | nd | trace | trace |
7,8-DiMeIQx | nd | 0.82 ± 0.01 d | 1.05 ± 0.05 bc | 1.00 ± 0.03 c | 1.09 ± 0.04 bc | 1.11 ± 0.14 abc |
Norharman | 0.05 ± 0.01 e | 14.31 ± 0.9 d | 18.6 ± 1.81 cd | 20.69 ± 1.16 c | 45.76 ± 3.00 b | 47.43 ± 5.62 ab |
Harman | 0.12 ± 0.01 f | 181.04 ± 17.02 b | 46.31 ± 2.91 e | 74.71 ± 5.24 d | 171.5 ± 16.77 b | 167.26 ± 11.84 b |
Phe-P-1 | nd | 0.09 ± 0.02 e | 0.16 ± 0.01 d | 0.20 ± 0.01 cd | 0.20 ± 0.04 cd | 0.24 ± 0.02 ab |
Trp-P-2 | nd | 2.31 ± 0.05 e | 4.86 ± 0.07 cd | 5.73 ± 0.11 b | 4.39 ± 0.17 c | 4.69 ± 0.62 bc |
PhIP | nd | 3.49 ± 0.15 d | 1.47 ± 0.05 f | 2.16 ± 0.02 e | 4.77 ± 0.32 b | 4.75 ± 0.30 b |
Trp-P-1 | nd | 14.92 ± 1.00 c | 39.24 ± 1.60 b | 41.67 ± 2.02 b | 37.33 ± 1.90 b | 38.90 ± 5.01 b |
MeAaC | nd | trace 4 | trace | trace | trace | trace |
Total | 2.11 ± 0.20 e | 239.13 ± 20.06 c | 145.69 ± 7.30 d | 170.94 ± 5.55 d | 300.66 ± 21.50 b | 290.74 ± 21.66 b |
Pork | ||||||
DMIP | 0.30 ± 0.00 g | 12.43 ± 1.44 f | 30.04 ± 1.26 b | 28.82 ± 3.49 bc | 27.91 ± 3.65 bcd | 23.14 ± 0.22 e |
Glu-P-2 | nd | nd | nd | nd | trace | trace |
8-MeIQx | nd | nd | nd | nd | 0.60 ± 0.02 a | 0.58 ± 0.01 a |
IQ[4,5-b] | nd | nd | nd | nd | trace | trace |
7,8-DiMeIQx | nd | 0.77 ± 0.01 d | 1.25 ± 0.04 a | 1.14 ± 0.07 abc | 1.17 ± 0.14 ab | 1.08 ± 0.07 bc |
Norharman | 0.07 ± 0.10 e | 14.82 ± 1.10 d | 20.98 ± 0.96 c | 23.19 ± 1.58 c | 51.98 ± 4.95 a | 49.10 ± 2.82 ab |
Harman | 0.10 ± 0.00 f | 162.31 ± 19.85 b | 95.13 ± 4.31 d | 120.83 ± 10.36 c | 220.57 ± 31.72 a | 167.25 ± 6.10 b |
Phe-P-1 | nd | 0.09 ± 0.01 e | 0.27 ± 0.02 a | 0.23 ± 0.02 bc | 0.19 ± 0.01 cd | 0.23 ± 0.01 bc |
Trp-P-2 | nd | 1.98 ± 0.09 e | 6.53 ± 0.29 a | 6.10 ± 0.15 ab | 5.14 ± 0.75 d | 4.82 ± 0.10 cd |
PhIP | nd | 3.72 ± 0.27 d | 3.75 ± 0.10 d | 4.28 ± 0.21 c | 7.93 ± 0.62 a | 5.40 ± 0.13 a |
Trp-P-1 | nd | 14.02 ± 0.60 c | 49.64 ± 1.46 a | 48.77 ± 1.24 a | 41.24 ± 6.6 b | 39.46 ± 2.62 b |
MeAaC | nd | trace | trace | trace | trace | trace |
Total | 0.48 ± 0.11 e | 210.14 ± 21.79 c | 207.60 ± 6.36 c | 233.37 ± 16.37 c | 356.74 ± 48.32 a | 291.07 ± 8.54 b |
Raw | Marinated | Stir-Fried (10 min at 95 °C) | Degassed (15 min at 85 °C) | LL–ST (60 min at 115 °C) | HS–ST (25 min at 125 °C) | |
---|---|---|---|---|---|---|
Chicken | ||||||
Amino acid | ||||||
Aspartic acid | 0.64 ± 0.08 abc | 0.70 ± 0.03 a | 0.63 ± 0.05 bc | 0.59 ± 0.00 cd | 0.55 ± 0.01 d | 0.67 ± 0.00 ab |
Glutamic acid | 1.20 ± 0.06 de | 1.48 ± 0.01 a | 1.35 ± 0.05 c | 1.41 ± 0.02 b | 1.25 ± 0.03 d | 1.18 ± 0.03 e |
Serine | 0.30 ± 0.02 de | 0.33 ± 0.00 ab | 0.27 ± 0.00 fg | 0.30 ± 0.01 de | 0.28 ± 0.00 f | 0.26 ± 0.01 g |
Glycine | 0.66 ± 0.03 a | 0.52 ± 0.00 c | 0.50 ± 0.01 c | 0.50 ± 0.04 c | 0.50 ± 0.02 c | 0.49 ± 0.01 c |
Threonine | 0.17 ± 0.01 abc | 0.19 ± 0.02 a | 0.17 ± 0.01 ab | 0.16 ± 0.00 bc | 0.13 ± 0.01 d | 0.17 ± 0.00 abc |
Arginine | 0.60 ± 0.00 bcd | 0.57 ± 0.00 de | 0.57 ± 0.02 de | 0.56 ± 0.02 e | 0.62 ± 0.01 b | 0.48 ± 0.01 f |
Alanine | 0.73 ± 0.03 abc | 0.74 ± 0.01 ab | 0.68 ± 0.03 de | 0.69 ± 0.03 cde | 0.65 ± 0.01 ef | 0.62 ± 0.01 f |
Tyrosine | 0.33 ± 0.02 a | 0.31 ± 0.00 bc | 0.30 ± 0.02 cd | 0.27 ± 0.00 ef | 0.25 ± 0.00 g | 0.28 ± 0.02 de |
Cystine | 0.24 ± 0.03 b | 0.27 ± 0.01 a | 0.23 ± 0.01 b | 0.17 ± 0.00 de | 0.16 ± 0.02 ef | 0.20 ± 0.01 cd |
Valine | 0.41 ± 0.05 d | 0.49 ± 0.01 a | 0.46 ± 0.02 b | 0.47 ± 0.00 ab | 0.41 ± 0.01 d | 0.42 ± 0.01 cd |
Methionine | 0.25 ± 0.01 bc | 0.26 ± 0.00 ab | 0.25 ± 0.01 bc | 0.24 ± 0.01 d | 0.20 ± 0.00 f | 0.23 ± 0.01 d |
Phenylalanine | 0.35 ± 0.02 e | 0.40 ± 0.01 a | 0.37 ± 0.01 bcd | 0.36 ± 0.00 cde | 0.32 ± 0.01 f | 0.33 ± 0.01 f |
Isoleucine | 0.38 ± 0.03 fg | 0.47 ± 0.00 a | 0.44 ± 0.02 bc | 0.45 ± 0.00 ab | 0.37 ± 0.01 g | 0.40 ± 0.01 def |
Leucine | 0.93 ± 0.05 ab | 0.95 ± 0.02 a | 0.89 ± 0.03 bc | 0.88 ± 0.04 bc | 0.81 ± 0.01 de | 0.81 ± 0.01 de |
Lysine | 0.90 ± 0.11 a | 0.53 ± 0.06 cd | 0.71 ± 0.13 b | 0.59 ± 0.03 bc | 0.46 ± 0.05 de | 0.70 ± 0.05 b |
Proline | 0.39 ± 0.01 a | 0.29 ± 0.00 cd | 0.31 ± 0.05 bc | 0.19 ± 0.00 f | 0.19 ± 0.01 f | 0.29 ± 0.01 cd |
Total amino acid | 8.49 ± 0.01 a | 8.52 ± 0.07 a | 8.13 ± 0.12 b | 7.83 ± 0.19 c | 7.14 ± 0.07 e | 7.53 ± 0.16 d |
Reducing sugar | nd 2 | 7.25 ± 0.07 g | 15.02 ± 0.18 a | 13.75 ± 0.37 c | 11.46 ± 0.12 e | 11.66 ± 0.32 e |
Creatine | 407.08 ± 24.24 a | 358.24 ± 22.20 b | 320.17 ± 14.56 c | 301.39 ± 21.70 cd | 51.7 ± 1.85 e | 51.18 ± 5.61 e |
Creatinine | 13.13 ± 0.95 g | 24.35 ± 0.44 f | 33.44 ± 0.56 ef | 56.34 ± 0.90 d | 204.07 ± 17.72 b | 214.62 ± 4.49 b |
Pork | ||||||
Amino acid | ||||||
Aspartic acid | 0.60 ± 0.01 cd | 0.70 ± 0.04 a | 0.60 ± 0.02 cd | 0.44 ± 0.01 e | 0.62 ± 0.02 bc | 0.55 ± 0.00 d |
Glutamic acid | 1.47 ± 0.02 a | 1.41 ± 0.03 b | 1.38 ± 0.03 bc | 1.39 ± 0.00 bc | 1.20 ± 0.02 de | 1.21 ± 0.01 de |
Serine | 0.34 ± 0.00 a | 0.34 ± 0.01 a | 0.31 ± 0.00 cd | 0.32 ± 0.00 bc | 0.30 ± 0.01 e | 0.26 ± 0.00 g |
Glycine | 0.59 ± 0.03 b | 0.59 ± 0.07 b | 0.52 ± 0.03 c | 0.61 ± 0.03 ab | 0.40 ± 0.01 d | 0.53 ± 0.01 c |
Threonine | 0.16 ± 0.02 bc | 0.17 ± 0.02 abc | 0.17 ± 0.01 abc | 0.15 ± 0.00 bc | 0.16 ± 0.01 bc | 0.15 ± 0.00 c |
Arginine | 0.60 ± 0.02 bdc | 0.60 ± 0.03 bcd | 0.58 ± 0.01 cde | 0.66 ± 0.01 a | 0.59 ± 0.01 cd | 0.61 ± 0.00 bc |
Alanine | 0.76 ± 0.03 a | 0.74 ± 0.05 ab | 0.67 ± 0.02 de | 0.70 ± 0.01 bcd | 0.54 ± 0.01 g | 0.65 ± 0.01 ef |
Tyrosine | 0.28 ± 0.01 de | 0.32 ± 0.00 ab | 0.28 ± 0.00 de | 0.26 ± 0.00 fg | 0.23 ± 0.02 h | 0.26 ± 0.00 efg |
Cystine | 0.22 ± 0.02 bc | 0.14 ± 0.00 f | 0.17 ± 0.01 ef | 0.18 ± 0.02 de | 0.10 ± 0.01 g | 0.16 ± 0.02 ef |
Valine | 0.46 ± 0.00 b | 0.47 ± 0.01 ab | 0.46 ± 0.00 b | 0.46 ± 0.00 b | 0.44 ± 0.01 bc | 0.42 ± 0.01 cd |
Methionine | 0.25 ± 0.00 bc | 0.27 ± 0.01 a | 0.23 ± 0.00 d | 0.21 ± 0.00 e | 0.20 ± 0.00 f | 0.21 ± 0.00 e |
Phenylalanine | 0.38 ± 0.01 bc | 0.38 ± 0.00 b | 0.36 ± 0.01 e | 0.35 ± 0.00 e | 0.33 ± 0.01 f | 0.33 ± 0.01 f |
Isoleucine | 0.45 ± 0.00 ab | 0.45 ± 0.00 ab | 0.42 ± 0.01 cd | 0.40 ± 0.00 de | 0.39 ± 0.01 efg | 0.38 ± 0.01 fg |
Leucine | 0.96 ± 0.04 a | 0.94 ± 0.07 ab | 0.86 ± 0.03 cd | 0.83 ± 0.00 de | 0.66 ± 0.02 e | 0.80 ± 0.01 e |
Lysine | 0.66 ± 0.00 bc | 0.66 ± 0.06 b | 0.54 ± 0.00 cd | 0.45 ± 0.10 de | 0.37 ± 0.02 e | 0.53 ± 0.05 cd |
Proline | 0.27 ± 0.02 de | 0.33 ± 0.01 b | 0.18 ± 0.00 f | 0.17 ± 0.01 f | 0.11 ± 0.01 g | 0.25 ± 0.02 e |
Total amino acid | 8.45 ± 0.06 a | 8.51 ± 0.14 a | 7.74 ± 0.14 cd | 7.59 ± 0.14 d | 6.64 ± 0.15 f | 7.31 ± 0.06 e |
Reducing sugar | nd | 7.03 ± 0.14 g | 14.46 ± 0.22 b | 14.62 ± 0.13 b | 10.77 ± 0.12 f | 12.38 ± 0.24 d |
Creatine | 429.14 ± 18.84 a | 327.17 ± 28.30 c | 319.86 ± 20.96 c | 287.1 ± 18.80 d | 48.72 ± 1.86 e | 60.72 ± 2.32 e |
Creatinine | 17.54 ± 0.65 g | 28.16 ± 0.69 ef | 35.1 ± 0.75 e | 49.75 ± 0.44 d | 174.55 ± 4.10 c | 227.23 ± 4.77 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inbaraj, B.S.; Lai, Y.-W.; Chen, B.-H. A Study on Production of Canned Minced Chicken and Pork and Formation of Heterocyclic Amines During Processing. Processes 2025, 13, 153. https://doi.org/10.3390/pr13010153
Inbaraj BS, Lai Y-W, Chen B-H. A Study on Production of Canned Minced Chicken and Pork and Formation of Heterocyclic Amines During Processing. Processes. 2025; 13(1):153. https://doi.org/10.3390/pr13010153
Chicago/Turabian StyleInbaraj, Baskaran Stephen, Yu-Wen Lai, and Bing-Huei Chen. 2025. "A Study on Production of Canned Minced Chicken and Pork and Formation of Heterocyclic Amines During Processing" Processes 13, no. 1: 153. https://doi.org/10.3390/pr13010153
APA StyleInbaraj, B. S., Lai, Y.-W., & Chen, B.-H. (2025). A Study on Production of Canned Minced Chicken and Pork and Formation of Heterocyclic Amines During Processing. Processes, 13(1), 153. https://doi.org/10.3390/pr13010153