The Use of Non-Conventional Sensors to Monitor and Evaluate the Quality of Coal During the Cleaning Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization
2.2. Solid–Liquid Electrical Conductivity
2.2.1. Batch Conductivity Measurement
2.2.2. Continuous Conductivity Measurement
3. Results
3.1. Structural Characterization
3.2. Solid–Liquid Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM D 121-00; Standard Terminology of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2000.
- Mohamad, N.F.; Hidayu, A.R.; Sherif, A.A.; Sharifah, A.S.A.K. Characteristics of bituminous coal, sub-bituminous coal and bottom ash from a coal-fired power plant. In Proceedings of the 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC), Langkawi, Malaysia, 7–9 April 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Dash, P.S.; Kumar, S.S.; Banerjee, P.K.; Ganguly, S. Chemical leaching of high-ash Indian coals for production of low-ash clean coal. Miner. Process. Extr. Metall. Rev. 2013, 34, 223–239. [Google Scholar] [CrossRef]
- De Souza, K.F.; Sampaio, C.H.; Kussler, J.A.T. Washability curves for the lower coal seams in Candiota Mine—Brazil. Fuel Process. Technol. 2012, 96, 140–149. [Google Scholar] [CrossRef]
- Saikia, B.K.; Boruah, R.K.; Gogoi, P.K. FT-IR and XRD analysis of coal from Makum coalfield of Assam. J. Earth Syst. Sci. 2007, 116, 575–579. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Coal Analysis, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Niu, C.; Xia, W.; Xie, G. Effect of low-temperature pyrolysis on surface properties of sub-bituminous coal sample and its relationship to flotation response. Fuel 2017, 208, 469–475. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Li, Z.; Sun, X.; Wang, G. Coal Gangue Target Detection Based on Improved YOLOv5s. Appl. Sci. 2023, 13, 11220. [Google Scholar] [CrossRef]
- Morar, S.H.; Harris, M.C.; Bradshaw, D.J. The use of machine vision to predict flotation performance. Miner. Eng. 2012, 36–38, 31–36. [Google Scholar] [CrossRef]
- Laskowski, J.S. Coal Flotation and Fine Coal Utilization; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Riquelme, A.; Desbiens, A.; Del Villar, R.; Maldonado, M. A device for measuring conductivity of dispersions. Measurement 2014, 53, 49–55. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Butterworth-Heinemann: Montreal, QC, Canada, 2016. [Google Scholar]
- Peng, Y.; Liang, L.; Tan, J.; Sha, J.; Xie, G. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int. J. Miner. Process. 2015, 142, 17–21. [Google Scholar] [CrossRef]
- Liang, L.; Li, Z.; Peng, Y.; Tan, J.; Xie, G. Influence of coal particles on froth stability and flotation performance. Miner. Eng. 2015, 81, 96–102. [Google Scholar] [CrossRef]
- Aldrich, C.; Marais, C.; Shean, B.J.; Cilliers, J.J. Online monitoring and control of froth flotation systems with machine vision: A review. Int. J. Miner. Process. 2010, 96, 1–13. [Google Scholar] [CrossRef]
- Holtham, P.; Nguyen, K. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam. Int. J. Miner. Process. 2002, 64, 163–180. [Google Scholar] [CrossRef]
- Peng, X.; Peng, T.; Zhao, L.; Song, Y.; Gui, W. Working condition recognition based on an improved NGLDM and interval data-based classifier for the antimony roughing process. Miner. Eng. 2016, 86, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Z.; Liu, J.; Tan, Z.; Xu, P. Recognition of flotation working conditions through froth image statistical modeling for performance monitoring. Miner. Eng. 2016, 86, 116–129. [Google Scholar] [CrossRef]
- Kaartinen, J.; Hätönen, J.; Hyötyniemi, H.; Miettunen, J. Machine-vision-based control of zinc flotation—A case study. Control Eng. Pract. 2006, 14, 1455–1466. [Google Scholar] [CrossRef]
- Estrada-Ruiz, R.H.; Pérez-Garibay, R. Análisis de imágenes de espumas de flotación: Cálculo de la velocidad de la espuma empleando la técnica de correlación cruzada normalizada. Supl. Rev. Latinoam. Metal. Mater. 2009, 2, 811–817. [Google Scholar]
- Jahedsaravani, A.; Massinaei, M.; Marhaban, M. An image segmentation algorithm for measurement of flotation froth bubble size distributions. Measurement 2017, 111, 29–37. [Google Scholar] [CrossRef]
- Jahedsaravani, A.; Massinaei, M.; Marhaban, M. Development of a machine vision system for real-time monitoring and control of batch flotation process. Int. J. Miner. Process. 2017, 167, 16–26. [Google Scholar] [CrossRef]
- Moolman, D.W.; Aldrich, C.; Schmitz, G.P.J.; Van Deventer, J.S.J. The interrelationship between surface froth characteristics and industrial flotation performance. Miner. Eng. 1996, 9, 837–854. [Google Scholar] [CrossRef]
- Moolman, D.W.; Eksteen, J.J.; Aldrich, C.; van Deventer, J.S.J. The significance of flotation froth appearance for machine vision control. Int. J. Miner. Process. 1996, 48, 135–158. [Google Scholar] [CrossRef]
- Jahedsaravani, A.; Marhaban, M.H.; Massinaei, M. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner. Eng. 2014, 69, 137–145. [Google Scholar] [CrossRef]
- Gomez, C.O.; Finch, J.A. Gas dispersion measurements in flotation cells. Int. J. Miner. Process. 2007, 84, 51–58. [Google Scholar] [CrossRef]
- Shean, B.J.; Cilliers, J.J. A review of froth flotation control. Int. J. Miner. Process. 2011, 100, 57–71. [Google Scholar] [CrossRef]
- Finch, J.A.; Dobby, G.S. Column Flotation; Pergamon Press: Toronto, ON, Canada, 1990. [Google Scholar]
- Yu, K.; Zou, W.; Kou, J.; Sun, C.; Xu, H.; Dong, H.; Rao, B.; Sun, T. Utilization of low metamorphic degree bituminous coal in direct reduction of high-phosphorus oolitic hematite and its mechanism. Fuel 2024, 375, 132497. [Google Scholar] [CrossRef]
- Ma, M.; Wang, W.; Zhang, K. Occurrence Characteristics of Fine-Grained Pyrite in Coal and Its Scaling Effect on Flotation Desulfurization. ACS Omega 2022, 7, 42467–42481. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, S.A.; Gitari, W.M.; Akinlua, A.; Petrik, L.F. Mineralogy and Geochemistry of Sub-Bituminous Coal and Its Combustion Products from Mpumalanga Province, South Africa. In Analytical Chemistry; Krull, I.S., Ed.; IntechOpen: London, UK, 2012; pp. 47–70. [Google Scholar] [CrossRef]
- Xu, R.T.; Li, H.J.; Hou, Q.L.; Li, X.S.; Yu, L.Y. The effect of different deformation mechanisms on the chemical structure of anthracite coals. Sci. China Earth Sci. 2015, 58, 502–509. [Google Scholar] [CrossRef]
- ASTM D 388-99; Standard Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2002.
- Fuerstenau, M.C.; Jameson, G.J.; Yoon, R.H. Froth Flotation: A Century of Innovation; SME: Englewood, CO, USA, 2007. [Google Scholar]
Element | Sample M1 | Sample M2 | Sample M3 | Sample M4 |
---|---|---|---|---|
(wt. %) | (wt. %) | (wt. %) | (wt. %) | |
C | 83.82 | 81.98 | 73.80 | 68.56 |
O | 13.65 | 15.10 | 21.36 | 24.38 |
Al | 0.42 | 1.72 | 1.95 | 1.00 |
Si | 1.40 | 3.70 | 2.39 | 5.66 |
S | 0.32 | 0.33 | 0.30 | 0.20 |
Fe | 0.31 | 0.12 | 0.11 | 0.06 |
Ti | - | 0.13 | 0.10 | 0.10 |
Other | 0.08 | - | - | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Ruiz, R.H.; Flores-Campos, R.; Ramos-Escobedo, G.T.; Rodríguez-Reyes, M.; Martínez-Luevanos, A.; Matamoros-Veloza, Z. The Use of Non-Conventional Sensors to Monitor and Evaluate the Quality of Coal During the Cleaning Process. Processes 2025, 13, 152. https://doi.org/10.3390/pr13010152
Estrada-Ruiz RH, Flores-Campos R, Ramos-Escobedo GT, Rodríguez-Reyes M, Martínez-Luevanos A, Matamoros-Veloza Z. The Use of Non-Conventional Sensors to Monitor and Evaluate the Quality of Coal During the Cleaning Process. Processes. 2025; 13(1):152. https://doi.org/10.3390/pr13010152
Chicago/Turabian StyleEstrada-Ruiz, Rosa Hilda, Rubén Flores-Campos, Gema Trinidad Ramos-Escobedo, Mario Rodríguez-Reyes, Antonia Martínez-Luevanos, and Zully Matamoros-Veloza. 2025. "The Use of Non-Conventional Sensors to Monitor and Evaluate the Quality of Coal During the Cleaning Process" Processes 13, no. 1: 152. https://doi.org/10.3390/pr13010152
APA StyleEstrada-Ruiz, R. H., Flores-Campos, R., Ramos-Escobedo, G. T., Rodríguez-Reyes, M., Martínez-Luevanos, A., & Matamoros-Veloza, Z. (2025). The Use of Non-Conventional Sensors to Monitor and Evaluate the Quality of Coal During the Cleaning Process. Processes, 13(1), 152. https://doi.org/10.3390/pr13010152