Reservoir Porosity Construction Based on BiTCN-BiLSTM-AM Optimized by Improved Sparrow Search Algorithm
Abstract
:1. Introduction
2. Principle and Modeling
2.1. Principle of the BiTCN-BiLSTM-AM
2.1.1. BiTCN
2.1.2. BiLSTM
2.1.3. BiTCN-BiLSTM-AM
2.2. Principle of the SSA
2.3. Improvement of the SSA
2.3.1. Phased Control Step Size Strategy
2.3.2. Dynamic Random Cauchy Mutation
2.3.3. ISSA Calculation Flow
Algorithm 1: The framework of the ISSA. |
Input: |
: the maximum iterations |
: the quantity of producers |
: the quantity of sparrows sensing danger |
: the alarm value |
: the quantity of sparrows |
Initialize the population and define the relevant parameters. |
Output:, . |
1: while () |
2: Determine which is currently the best and worst fit by ranking the fitness values. |
3: |
4: for |
5: Update the position with Equations (8)–(11); |
6: end for |
7: for |
8: Update the position with Equations (12)–(14); |
9: end for |
10: for |
11: Update the position with Equation (7); |
12: end for |
13: Get the current position; |
14: Update if the new position is better. |
15: |
16: end while |
17: return , |
3. ISSA Performance Test
3.1. Analysis of Convergence Curves
3.2. Statistical Analysis of ISSA
4. Practical Application and Result Analysis
4.1. ISSA-BiTCN-BiLSTM-AM Prediction Flow
4.2. Data Preparation
4.3. Analysis of Forecast Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Peng, S. A New Scheme to Improve the Performance of Artificial Intelligence Techniques for Estimating Total Organic Carbon from Well Logs. Energies 2018, 11, 747. [Google Scholar] [CrossRef]
- Nikolaos, C.K.; Athanassios, C.M.; Michail, C. The Contribution of Virtual Reality in Awareness and Preparedness of Oil and Gas Professionals. J. Eng. Sci. Technol. Rev. 2022, 15, 9–12. [Google Scholar]
- Kok, M.V.; Gokcal, B.; Ersoy, G. Reservoir Analysis by Well Log Data. Energy Sources 2005, 27, 399–404. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.W.; Fan, S. Oil Logging Reservoir Recognition Based on TCN and SA-BiLSTM Deep Learning Method. Eng. Appl. Artif. Intell. 2023, 121, 105950. [Google Scholar] [CrossRef]
- Vaferi, B.; Eslamloueyan, R.; Ayatollahi, S. Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. J. Pet. Sci. Eng. 2011, 77, 254–262. [Google Scholar] [CrossRef]
- Geng, Z.; Hu, X.; Ding, N.; Zhao, S.; Han, Y. A pattern recognition modeling approach based on the intelligent ensemble classifier: Application to identification and appraisal of water-flooded layers. Proc. Inst. Mech. Eng. 2019, 233, 737–750. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, B.; Zhu, H.; Goh, H.H.; Dong, Y.; Wu, T. Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model. Energy 2023, 285, 128762. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, P.; Peng, X. BinVulDet: Detecting vulnerability in binary program via decompiled pseudo code and BiLSTM-attention. Comput. Secur. 2023, 125, 103023. [Google Scholar] [CrossRef]
- Wang, G.; Teng, H.; Qiao, L.; Yu, H.; Cui, Y.; Xiao, K. Well Logging Reconstruction Based on a Temporal Convolutional Network and Bidirectional Gated Recurrent Unit Network with Attention Mechanism Optimized by Improved Sand Cat Swarm Optimization. Energies 2024, 17, 2710. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P.; Jiang, F.; Xie, J.; Yu, T. Fault Diagnosis of Nuclear Power Plant Based on Sparrow Search Algorithm Optimized CNN-LSTM Neural Network. Energies 2023, 16, 2934. [Google Scholar] [CrossRef]
- Qiao, L.; He, N.; Cui, Y.; Zhu, J.; Xiao, K. Reservoir Porosity Prediction Based on BiLSTM-AM Optimized by Improved Pelican Optimization Algorithm. Energies 2024, 17, 1479. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Al-Betar, M.A.; Doush, I.A. Recent Versions and Applications of Sparrow Search Algorithm. Arch. Comput. Methods Eng. 2023, 30, 2831–2858. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79, 7305–7336. [Google Scholar] [CrossRef]
- Trojovsk, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef] [PubMed]
- Seyedali, M.; Andrew, L. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
Function | ISSA | SSA | POA | DBO | WOA |
---|---|---|---|---|---|
F1 | 3.12 × 102 | 2.21 × 103 | 8.75 × 102 | 6.83 × 103 | 1.12 × 103 |
(5.17 × 100) | (1.59 × 103) | (8.89 × 102) | (2.87 × 103) | (6.34 × 102) | |
F2 | 4.23 × 102 | 4.31 × 102 | 4.29 × 102 | 4.64 × 102 | 4.59 × 102 |
(3.15 × 101) | (2.51 × 101) | (3.19 × 101) | (3.28 × 101) | (7.27 × 101) | |
F3 | 6.14 × 102 | 6.20 × 102 | 6.27 × 102 | 6.26 × 102 | 6.46 × 102 |
(7.39 × 100) | (1.09 × 101) | (1.07 × 101) | (1.12 × 101) | (1.01 × 101) | |
F4 | 8.12 × 102 | 8.28 × 102 | 8.21 × 102 | 8.48 × 102 | 8.33 × 102 |
(5.06 × 100) | (6.17 × 100) | (6.88 × 100) | (8.74 × 100) | (9.88 × 100) | |
F5 | 1.16 × 103 | 1.14 × 103 | 1.10 × 103 | 1.02 × 103 | 1.48 × 103 |
(2.61 × 102) | (1.83 × 102) | (1.33 × 102) | (1.09 × 102) | (1.86 × 102) | |
F6 | 3.51 × 103 | 4.48 × 103 | 3.76 × 103 | 4.95 × 104 | 6.63 × 103 |
(2.08 × 103) | (2.16 × 103) | (2.38 × 103) | (2.72 × 104) | (4.62 × 103) | |
F7 | 2.01 × 103 | 2.06 × 103 | 2.04 × 103 | 2.10 × 103 | 2.09 × 103 |
(1.91 × 101) | (2.84 × 101) | (1.09 × 101) | (4.14 × 101) | (3.39 × 101) | |
F8 | 2.20 × 103 | 2.20 × 103 | 2.20 × 103 | 2.24 × 103 | 2.21 × 103 |
(2.86 × 100) | (3.47 × 100) | (1.94 × 101) | (2.39 × 101) | (1.02 × 101) | |
F9 | 2.51 × 103 | 2.52 × 103 | 2.52 × 103 | 2.65 × 103 | 2.62 × 103 |
(5.04 × 100) | (3.27 × 101) | (2.09 × 101) | (4.45 × 101) | (4.84 × 101) | |
F10 | 2.54 × 103 | 2.56 × 103 | 2.51 × 103 | 2.55 × 103 | 2.56 × 103 |
(6.98 × 101) | (6.89 × 101) | (5.76 × 101) | (1.82 × 102) | (1.31 × 102) | |
F11 | 2.71 × 103 | 2.88 × 103 | 2.76 × 103 | 3.15 × 103 | 2.72 × 103 |
(1.15 × 102) | (2.09 × 102) | (1.78 × 102) | (2.40 × 102) | (1.10 × 102) | |
F12 | 2.81 × 103 | 2.85 × 103 | 2.84 × 103 | 2.85 × 103 | 2.89 × 103 |
(2.47 × 100) | (1.71 × 101) | (1.30 × 101) | (1.27 × 101) | (5.00 × 101) |
Function | ISSA vs. SSA | ISSA vs. POA | ISSA vs. DBO | ISSA vs. WOA | ||||
---|---|---|---|---|---|---|---|---|
p | h | p | h | p | h | p | h | |
F1 | 3.13 × 10−11 | + | 3.13 × 10−11 | + | 3.13 × 10−11 | + | 3.13 × 10−11 | + |
F2 | 3.52 × 10−2 | + | 3.13 × 10−2 | + | 8.14 × 10−5 | + | 1.98 × 10−2 | + |
F3 | 2.02 × 10−7 | + | 1.71 × 10−8 | + | 3.34 × 10−8 | + | 4.51 × 10−11 | + |
F4 | 4.72 × 10−4 | + | 1.81 × 10−4 | + | 2.16 × 10−7 | + | 6.14 × 10−4 | + |
F5 | 4.56 × 10−1 | − | 9.48 × 10−1 | − | 5.47 × 10−1 | − | 5.94 × 10−5 | + |
F6 | 2.70 × 10−2 | + | 7.50 × 10−2 | + | 3.02 × 10−11 | + | 3.75 × 10−4 | + |
F7 | 3.31 × 10−6 | + | 1.19 × 10−2 | + | 8.09 × 10−10 | + | 2.46 × 10−9 | + |
F8 | 7.08 × 10−8 | + | 2.61 × 10−3 | + | 6.68 × 10−11 | + | 2.16 × 10−8 | + |
F9 | 2.03 × 10−10 | + | 2.29 × 10−6 | + | 2.30 × 10−11 | + | 3.39 × 10−11 | + |
F10 | 3.46 × 10−1 | − | 8.41 × 10−1 | − | 7.59 × 10−7 | + | 4.92 × 10−5 | + |
F11 | 8.89 × 10−6 | + | 1.66 × 10−2 | + | 5.36 × 10−11 | + | 4.34 × 10−6 | + |
F12 | 4.05 × 10−2 | + | 4.80 × 10−2 | + | 3.62 × 10−8 | + | 3.17 × 10−10 | + |
Friedman Test | ISSA | SSA | POA | DBO | WOA |
---|---|---|---|---|---|
Mean | 2.4112 | 3.1431 | 4.5624 | 4.0432 | 7.0856 |
Rank | 1 | 2 | 4 | 3 | 5 |
Models | MAE | RMSE |
---|---|---|
BPNN | 1.1327 | 1.0658 |
BiTCN | 0.8712 | 0.8925 |
BiLSTM | 0.7661 | 0.6981 |
ISSA-BiTCN-BiLSTM-AM | 0.5696 | 0.4293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, L.; Gao, H.; Cui, Y.; Yang, Y.; Liang, S.; Xiao, K. Reservoir Porosity Construction Based on BiTCN-BiLSTM-AM Optimized by Improved Sparrow Search Algorithm. Processes 2024, 12, 1907. https://doi.org/10.3390/pr12091907
Qiao L, Gao H, Cui Y, Yang Y, Liang S, Xiao K. Reservoir Porosity Construction Based on BiTCN-BiLSTM-AM Optimized by Improved Sparrow Search Algorithm. Processes. 2024; 12(9):1907. https://doi.org/10.3390/pr12091907
Chicago/Turabian StyleQiao, Lei, Haijun Gao, You Cui, Yang Yang, Shixin Liang, and Kun Xiao. 2024. "Reservoir Porosity Construction Based on BiTCN-BiLSTM-AM Optimized by Improved Sparrow Search Algorithm" Processes 12, no. 9: 1907. https://doi.org/10.3390/pr12091907
APA StyleQiao, L., Gao, H., Cui, Y., Yang, Y., Liang, S., & Xiao, K. (2024). Reservoir Porosity Construction Based on BiTCN-BiLSTM-AM Optimized by Improved Sparrow Search Algorithm. Processes, 12(9), 1907. https://doi.org/10.3390/pr12091907