Tomato Pomace Powder as a Functional Ingredient in Minced Meat Products—Influence on Technological and Sensory Properties of Traditional Serbian Minced Meat Product Ćevapi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tomato Pomace Preparation and Analysis
2.2. Ćevapi Preparation and Analysis
2.3. Determination of Technological Properties
2.4. Instrumental Colour and Texture Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Tomato Pomace Powder Analysis
3.2. Technological Properties
3.3. Instrumental Colour Analysis
3.4. Instrumental Texture Analysis
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (a) the upgrading concept; (b) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef] [PubMed]
- Moshtaghian, H.; Bolton, K.; Rousta, K. Challenges for upcycled foods: Definition, inclusion in the food waste management hierarchy and public acceptability. Foods 2021, 10, 2874. [Google Scholar] [CrossRef] [PubMed]
- Spratt, O.; Suri, R.; Deutsch, J. Defining upcycled food products. J. Culin. Sci. Technol. 2021, 19, 485–496. [Google Scholar] [CrossRef]
- Zuorro, A.; Fidaleo, M.; Lavecchia, R. Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb. Technol. 2011, 49, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016, 9, S1010–S1018. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Eslami, E.; Carpentieri, S.; Pataro, G.; Ferrari, G. A comprehensive overview of tomato processing by-product valorization by conventional methods versus emerging technologies. Foods 2023, 12, 166. [Google Scholar] [CrossRef]
- Bianchi, A.R.; Vitale, E.; Guerretti, V.; Palumbo, G.; De Clemente, I.M.; Vitale, L.; Arena, C.; De Maio, A. Antioxidant characterization of six tomato cultivars and derived products destined for human consumption. Antioxidants 2023, 12, 761. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in tomatoes and tomato products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Osman, S.F.; Irwin, P.; Fett, W.F.; O’Conno, J.V.; Parris, N. Preparation, isolation, and characterization of cutin monomers and oligomers from tomato peels. J. Agric. Food Chem. 1999, 47, 799–802. [Google Scholar] [CrossRef]
- Skwarek, P.; Karwowska, M. Fatty acids profile and antioxidant properties of raw fermented sausages with the addition of tomato pomace. Biomolecules 2022, 12, 1695. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z.; Belović, M.; Torbica, A.; Jokanović, M.; Urumović, N.; et al. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef] [PubMed]
- Stajić, S.; Tomasevic, I.; Tomovic, V.; Stanišić, N. Dietary fibre as phosphate replacement in all-beef model system emulsions with reduced content of sodium chloride. J. Food Nutr. Res. 2022, 61, 277–285. [Google Scholar]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork bologna sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Textural properties and quality of meat products containing fruit or vegetable products: A review. J. Food Nutr. Res. 2021, 60, 187–202. [Google Scholar]
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Stadnik, J.; Stasiak, D.M.; Wójciak, K.; Lorenzo, J.M. Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int. J. Food Sci. Technol. 2021, 56, 6142–6156. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Benvenuti, S. The role of fruit by-products as bioactive compounds for intestinal health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- AOAC 934.06:1996; Moisture in Dried Fruits. Aoac Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists: Arlington, VA, USA, 2000.
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- NMKL Method No.160:1998; Fat, Determination in Foods. Nordic Committee on Food Analysis. Institute of Marin Research, NMKL NordVal International: Bergen, Norway, 1998.
- NMKL Method No.173:2005; Fat, Determination in Foods. Nordic Committee on Food Analysis. Institute of Marin Research, NMKL NordVal International: Bergen, Norway, 2005.
- AOAC 985.29:1986; Total Dietary Fiber in Foods, Enzymatic–Gravimetric Method. Aoac Official Methods of Analysis, 17th ed. The Association of Official Analytical Chemists: Arlington, VA, USA, 2000.
- Gafta Method 10.1:2018; Sugar—Luff Schoorl Method. GAFTA Analysis Methods, The Grain and Feed Trade Association: London, UK, 2018.
- AOAC 986.25:1988; Proximate Analysis of Milk-Based Infant Formula. Aoac Official Methods of Analysis, 17th ed. The Association of Official Analytical Chemists: Arlington, VA, USA, 2000.
- Tomasevic, I.; Tomovic, V.; Milovanovic, B.; Lorenzo, J.; Đorđević, V.; Karabasil, N.; Djekic, I. Comparison of a computer vision system vs. Traditional colorimeter for color evaluation of meat products with various physical properties. Meat Sci. 2019, 148, 5–12. [Google Scholar] [CrossRef]
- Del Valle, M.; Cámara, M.; Torija, M.-E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Djekic, I.; Stajic, S.; Udovicki, B.; Siladji, C.; Djordjevic, V.; Terjung, N.; Heinz, V.; Tomasevic, I. Quality and oral processing characteristics of traditional serbian ćevap influenced by game meat. Foods 2023, 12, 2070. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Stajić, S.B.; Miletić, N.M.; Petković, M.M.; Dmitrić, M.P.; Đurović, V.M.; Heinz, V.; Tomasevic, I.B. Techno-functional properties of burgers fortified by wild garlic extract: A reconsideration. Foods 2023, 12, 2100. [Google Scholar] [CrossRef] [PubMed]
- Patinho, I.; Selani, M.M.; Saldaña, E.; Bortoluzzi, A.C.T.; Rios-Mera, J.D.; da Silva, C.M.; Kushida, M.M.; Contreras-Castillo, C.J. Agaricus bisporus mushroom as partial fat replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Sci. 2021, 172, 108307. [Google Scholar] [CrossRef] [PubMed]
- Polizer-Rocha, Y.J.; Lorenzo, J.M.; Pompeu, D.; Rodrigues, I.; Baldin, J.C.; Pires, M.A.; Freire, M.T.A.; Barba, F.J.; Trindade, M.A. Physicochemical and technological properties of beef burger as influenced by the addition of pea fibre. Int. J. Food Sci. Technol. 2020, 55, 1018–1024. [Google Scholar] [CrossRef]
- Grasso, S.; Goksen, G. The best of both worlds? Challenges and opportunities in the development of hybrid meat products from the last 3 years. LWT Food Sci. Technol. 2023, 173, 114235. [Google Scholar] [CrossRef]
- Piñero, M.P.; Parra, K.; Huerta-Leidenz, N.; Arenas de Moreno, L.; Ferrer, M.; Araujo, S.; Barboza, Y. Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Sci. 2008, 80, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. Technological strategies to produce functional meat burgers. LWT Food Sci. Technol. 2015, 62, 697–703. [Google Scholar] [CrossRef]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (passiflora edulis var. Flavicarpa) co-products. Meat Sci. 2014, 97, 270–276. [Google Scholar] [CrossRef]
- Calvo, M.M.; García, M.L.; Selgas, M.D. Dry fermented sausages enriched with lycopene from tomato peel. Meat Sci. 2008, 80, 167–172. [Google Scholar] [CrossRef]
- Candogan, K. The effect of tomato paste on some quality characteristics of beef patties during refrigerated storage. Eur. Food Res. Technol. 2002, 215, 305–309. [Google Scholar] [CrossRef]
- Ramírez-Navas, J.S.; Rodríguez De Stouvenel, A. Characterization of colombian quesillo cheese by spectrocolorimetry. Vitae 2012, 19, 178–185. [Google Scholar] [CrossRef]
- Magalhães, I.M.C.; Paglarini, C.d.S.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo fiber improves the functional properties of reduced salt and phosphate-free bologna sausage. J. Food Process. Preserv. 2020, 44, e14929. [Google Scholar] [CrossRef]
- Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Tungland, B.C.; Meyer, D. Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 2002, 1, 90–109. [Google Scholar] [CrossRef] [PubMed]
Properties | Freeze-Dried TP |
---|---|
DPPH [mg Trolox eqv./g] | 0.033 ± 0.000 |
ABTS [mg Trolox eqv./g] | 0.062 ± 0.001 |
TPC [mg gallic acid eqv./g] | 4.08 ± 0.167 |
Moisture [g/100 g] | 7.52 ± 0.12 |
Protein [g/100 g] | 8.86 ± 0.76 |
Total fat [g/100 g] | 0.91 ± 0.14 |
Ash [g/100 g] | 6.77 ± 0.12 |
Available carbohydrates [g/100 g] | 13.39 ± 0.03 |
Total carbohydrates [g/100 g] | 75.95 ± 0.58 |
Total dietary fibre [g/100 g] | 62.71 ± 0.65 |
CON | TP5 | TP10 | TP20 | |
---|---|---|---|---|
pH (raw) | 7.36 ± 0.20 ab | 7.49 ± 0.21 b | 7.36 ± 0.24 ab | 7.17 ± 0.13 a |
pH (grilled) | 7.43 ± 0.23 ab | 7.47 ± 0.17 b | 7.33 ± 0.12 ab | 7.27 ± 0.18 a |
CL (%) | 16.70 ± 1.49 c | 17.21 ± 2.80 c | 13.86 ± 1.53 b | 11.63 ± 0.86 a |
dL (%) | 23.69 ± 3.88 ab | 24.51 ± 3.05 b | 20.96 ± 3.50 ab | 20.29 ± 2.94 a |
aw | 0.96 ± 0.00 a | 0.96 ± 0.00 a | 0.96 ± 0.00 a | 0.96 ± 0.01 a |
Raw | CON | TP5 | TP10 | TP20 |
---|---|---|---|---|
L* | 56.38 ± 3.46 a | 57.00 ± 3.82 a | 59.19 ± 2.37 a | 56.94 ± 3.90 a |
a* | 41.72 ± 1.70 ab | 42.36 ± 2.28 b | 41.08 ± 1.74 ab | 40.16 ± 2.11 a |
b* | 14.30 ± 1.04 a | 17.69 ± 1.54 b | 20.41 ± 1.72 c | 25.74 ± 2.36 d |
C | 44.12 ± 1.89 a | 45.92 ± 2.59 ab | 46.27 ± 1.97 ab | 47.77 ± 2.45 b |
h | 18.85 ± 0.87 a | 22.64 ± 1.14 b | 26.16 ± 1.66 c | 32.57 ± 2.45 d |
ΔE | / | 4.98 ± 1.82 | 7.46 ± 1.63 | 12.05 ± 1.83 |
Grilled | ||||
L* | 52.27 ± 5.66 a | 50.08 ± 4.04 a | 49.94 ± 3.29 a | 50.24 ± 3.90 a |
a* | 16.91 ± 0.94 a | 17.61 ± 2.45 a | 19.63 ± 1.69 b | 20.55 ± 1.54 b |
b* | 25.50 ± 1.91 a | 27.27 ± 2.40 ab | 29.55 ± 3.07 b | 32.88 ± 3.90 c |
C | 30.66 ± 1.44 a | 32.59 ± 2.59 a | 35.58 ± 2.57 b | 38.87 ± 3.55 c |
h | 56.30 ± 2.81 a | 57.31 ± 3.89 a | 56.20 ± 3.81 a | 57.78 ± 3.37 a |
ΔE | / | 6.53 ± 3.58 | 9.01 ± 3.93 | 9.68 ± 4.07 |
CON | TP5 | TP10 | TP20 | |
---|---|---|---|---|
Hardness (N) | 11.98 ± 1.27 a | 14.27 ± 1.60 b | 13.82 ± 1.61 b | 14.55 ± 1.20 b |
Adhesiveness (N*s) | −0.26 ± 0.13 a | −0.28 ± 0.14 a | −0.35 ± 0.13 a | −0.29 ± 0.18 a |
Springiness | 0.835 ± 0.027 a | 0.854 ± 0.031 a | 0.830 ± 0.034 a | 0.841 ± 0.033 a |
Cohesiveness | 0.674 ± 0.065 a | 0.693 ± 0.038 a | 0.684 ± 0.056 a | 0.697 ± 0.035 a |
Chewiness (N) | 6.76 ± 1.15 a | 8.42 ± 0.91 b | 7.87 ± 1.32 b | 8.55 ± 1.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stajić, S.; Skwarek, P.; Đurđević, S.; Karwowska, M.; Pisinov, B.; Tomasevic, I.; Kurćubić, V. Tomato Pomace Powder as a Functional Ingredient in Minced Meat Products—Influence on Technological and Sensory Properties of Traditional Serbian Minced Meat Product Ćevapi. Processes 2024, 12, 1330. https://doi.org/10.3390/pr12071330
Stajić S, Skwarek P, Đurđević S, Karwowska M, Pisinov B, Tomasevic I, Kurćubić V. Tomato Pomace Powder as a Functional Ingredient in Minced Meat Products—Influence on Technological and Sensory Properties of Traditional Serbian Minced Meat Product Ćevapi. Processes. 2024; 12(7):1330. https://doi.org/10.3390/pr12071330
Chicago/Turabian StyleStajić, Slaviša, Patrycja Skwarek, Sanja Đurđević, Małgorzata Karwowska, Boris Pisinov, Igor Tomasevic, and Vladimir Kurćubić. 2024. "Tomato Pomace Powder as a Functional Ingredient in Minced Meat Products—Influence on Technological and Sensory Properties of Traditional Serbian Minced Meat Product Ćevapi" Processes 12, no. 7: 1330. https://doi.org/10.3390/pr12071330
APA StyleStajić, S., Skwarek, P., Đurđević, S., Karwowska, M., Pisinov, B., Tomasevic, I., & Kurćubić, V. (2024). Tomato Pomace Powder as a Functional Ingredient in Minced Meat Products—Influence on Technological and Sensory Properties of Traditional Serbian Minced Meat Product Ćevapi. Processes, 12(7), 1330. https://doi.org/10.3390/pr12071330