Study on the Thermal Expansion Characteristics of Coal during CO2 Adsorption
Abstract
:1. Introduction
2. Coal Sample Source and Experimental Test
2.1. Coal Sample Source
2.2. Experimental Test
2.2.1. Thermal Property Test
2.2.2. Linear Expansion Coefficient Test
2.2.3. Adsorption Heat Test
3. The Adsorption Thermal Expansion Characteristics of Coal
3.1. Adsorption Heat
3.2. Effect of Adsorption Heat on Coal Temperature
3.3. Thermal Expansion Rates
3.4. Effect of Thermal Expansion on Coal Permeability
4. Conclusions
- (1)
- Under the same conditions, the adsorption heat increases with increasing pressure and decreases with increasing temperature. The relationship between adsorption heat and adsorption pressure conforms to the Langmuir equation up to 40 °C. Beyond 40 °C, the relationship conforms to a second-order equation, and at 100 °C, the adsorption heat during CO2 adsorption is more affected by temperature. The relationship between temperature variation, thermal expansion rate, permeability loss rate, and adsorption pressure during CO2 adsorption conforms to a second-order equation, and the change trends of these parameters with pressure are similar to the change trend of adsorption heat with pressure.
- (2)
- At 4 MPa, the temperatures of Xinjiang, Liulin, and Zhaozhuang coal samples increased by 95.767 °C, 87.463 °C, and 97.8 °C, respectively, after CO2 adsorption. Under the in situ condition of the coal reservoir, owing to energy exchange with the surrounding environment, the temperature variation in the coal is not severe.
- (3)
- The maximum thermal expansion rates of Xinjiang, Liulin, and Zhaozhuang coal samples reach 12.66%, 5.74%, and 14.37%, respectively, after CO2 adsorption. Under the in situ condition of the coal reservoir, the change in coal matrix volume caused by the heat released by adsorbed CO2 is considerable, indicating that thermal expansion is the main reason for coal adsorption expansion.
- (4)
- The thermal expansion of coal samples during the CO2 adsorption process leads to a decrease in coal reservoir permeability, with the maximum permeability loss rates of Xinjiang, Liulin, and Zhaozhuang coal samples reaching 16.16%, 7.51%, and 18.24%, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyu, Q.; Shi, J.; Gamage, R.P. Effects of testing method, lithology and fluid-rock interactions on shale permeability: A review of laboratory measurements. J. Nat. Gas Sci. Eng. 2020, 78, 103302. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Li, G.; Huo, J.; Li, S.; Li, X. Modeling study on supercritical CO2 fracturing applicability and capacity to stimulate reservoirs with different permeabilities. J. Pet. Sci. Eng. 2022, 213, 110427. [Google Scholar] [CrossRef]
- Yang, J.; Lian, H.; Li, L. Fracturing in coals with different fluids: An experimental comparison between water, liquid CO2, and supercritical CO2. Sci. Rep. 2020, 10, 110427. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, Q.; Niu, Q.; Pan, J.; Wang, H.; Wang, Z. CO2 adsorption and swelling of coal under constrained conditions and their stage-change relationship. J. Nat. Gas Sci. Eng. 2020, 76, 103205. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Du, Z.; Wang, G.G.; Heng, S.; Liu, X.; Lin, J. CO2 and N2 adsorption/desorption effects and thermodynamic characteristics in confined coal. J. Pet. Sci. Eng. 2021, 207, 109166. [Google Scholar] [CrossRef]
- Sampath KH, S.M.; Perera MS, A.; Matthai, S.K.; Ranjith, P.G.; Dong-yin, L. Modelling of fully-coupled CO2 diffusion and adsorption-induced coal matrix swelling. Fuel 2020, 262, 116486. [Google Scholar] [CrossRef]
- Li-wei, C.; Lin, W.; Tian-hong, Y.; Hong-min, Y. Deformation and swelling of coal induced from competitive adsorption of CH4/CO2/N2. Fuel 2021, 286, 119356. [Google Scholar] [CrossRef]
- Tian, W.; Liu, H. Insight into the Adsorption of Methane on Gas Shales and the Induced Shale Swelling. ACS Omega 2020, 5, 31508–31517. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Niu, Q.; Wang, Z.; Wang, W.; Yuan, W.; Weng, H.; Sun, H.; Li, Y.; Du, Z. CO2 Adsorption/Desorption, Induced Deformation Behavior, and Permeability Characteristics of Different Rank Coals: Application for CO2-Enhanced Coalbed Methane Recovery. Energy Fuels 2022, 36, 5709–5722. [Google Scholar] [CrossRef]
- Pan, J.; He, H.; Li, G.; Wang, X.; Hou, Q.; Liu, L.; Cheng, N. Anisotropic strain of anthracite induced by different phase CO2 injection and its effect on permeability. Energy 2023, 284, 128619. [Google Scholar] [CrossRef]
- Kang, J.; Elsworth, D.; Fu, X.; Liang, S.; Chen, H. Contribution of thermal expansion on gas adsorption to coal sorption-induced swelling. Chem. Eng. J. 2022, 432, 134427. [Google Scholar] [CrossRef]
- Chen, M.; Masum, S.; Sadasivam, S.; Thomas, H. Modelling anisotropic adsorption-induced coal swelling and stress-dependent anisotropic permeability. Int. J. Rock Mech. Min. Sci. 2022, 153, 105107. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Zhao, K.; Lei, C.; Wen, H.; Ma, L.; Shu, C.M. Deformation mechanism and displacement ability during CO2 displacing CH4 in coal seam under different temperatures. J. Nat. Gas Sci. Eng. 2022, 108, 104838. [Google Scholar] [CrossRef]
- Ren, S.J.; Wang, C.P.; Xiao, Y.; Deng, J.; Tian, Y.; Song, J.J.; Chen, X.-J.; Sun, G.F. Thermal properties of coal during low temperature oxidation using a grey correlation method. Fuel 2020, 260, 116287. [Google Scholar] [CrossRef]
- Cong, Y.; Zhai, C.; Yu, X.; Xu, J.; Sun, Y.; Tang, W.; Zheng, Y.; Wu, J. Study on typical temperature effect mechanism of multi-component coal during low-temperature thermal expansion. Case Stud. Therm. Eng. 2023, 43, 102744. [Google Scholar] [CrossRef]
- Su, X.; Feng, Z.; Cai, T.; Shen, Y. Coal Permeability Variation during the Heating Process considering Thermal Expansion and Desorption Shrinkage. Adsorpt. Sci. Technol. 2022, 2022, 7848388. [Google Scholar] [CrossRef]
- Wang, R.; Su, X.; Yu, S.; Su, L.; Hou, J.; Wang, Q. Experimental Investigation of the Thermal Expansion Characteristics of Anthracite Coal Induced by Gas Adsorption. Adsorpt. Sci. Technol. 2023, 2023, 5201794. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Huang, L. Permeability Evolution of Naturally Fractured Coal Injected with High-Temperature Nitrogen: Experimental Observations. Processes 2021, 9, 296. [Google Scholar] [CrossRef]
- Li, H.; Zeng, Q.; Kang, J.; Cheng, G.; Cheng, J.; Wang, S. A Comparative Investigation of the Adsorption Characteristics of CO2, O2 and N2 in Different Ranks of Coal. Sustainability 2023, 15, 8075. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1916, 40, 1361. [Google Scholar] [CrossRef]
- Fernandez, C.A.; Liu, J.; Thallapally, P.K.; Strachan, D.M. Switching Kr/Xe Selectivity with Temperature in a Metal–Organic Framework. J. Am. Chem. Soc. 2012, 134, 9046–9049. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Shang, X.; He, P. A Connectivity Metrics-Based Approach for the Prediction of Stress-Dependent Fracture Permeability. Water 2024, 16, 697. [Google Scholar] [CrossRef]
Coal Samples | RO a/% | Porosity/% | Industrial Analysis | Elemental Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad b/% | Aad c/% | Vad d/% | Fcad e/% | C/% | H/% | O/% | N/% | |||
Xinjiang | 0.64 | 5.18 | 3.24 | 1.92 | 28.42 | 66.42 | 79.55 | 4.13 | 10.09 | 0.80 |
Liulin | 1.52 | 9.3114 | 0.95 | 18.93 | 10.35 | 69.77 | 79.43 | 3.28 | 2.89 | 1.54 |
Zhaozhuang | 3.46 | 7.8654 | 1.14 | 8.48 | 10.91 | 79.47 | 71.65 | 3.16 | 3.97 | 1.50 |
Coal Samples | Temperature/(°C) | Thermal Capacity/[J/(g·K)] | Thermal Conductivity/[W/(m·K)] | Thermal Diffusivity/(mm2/s) | Linear Expansion Coefficient/(K−1) |
---|---|---|---|---|---|
Xinjiang | 25 | 0.613 | 0.120 | 0.086 | 3.91 × 10−5 |
40 | 0.560 | 0.109 | 0.085 | 2.83 × 10−4 | |
60 | 0.564 | 0.102 | 0.079 | 1.02 × 10−3 | |
80 | 0.543 | 0.092 | 0.074 | 1.72 × 10−3 | |
100 | 0.540 | 0.088 | 0.071 | 2.21 × 10−3 | |
Liulin | 25 | 0.851 | 0.193 | 0.119 | 1.87 × 10−5 |
40 | 0.766 | 0.161 | 0.110 | 1.39 × 10−4 | |
60 | 0.776 | 0.154 | 0.104 | 6.36 × 10−4 | |
80 | 0.870 | 0.168 | 0.101 | 7.64 × 10−4 | |
100 | 0.783 | 0.144 | 0.096 | 8.70 × 10−4 | |
Zhaozhuang | 25 | 0.624 | 0.162 | 0.109 | 1.75 × 10−5 |
40 | 0.627 | 0.157 | 0.105 | 4.53 × 10−4 | |
60 | 0.698 | 0.169 | 0.101 | 1.06 × 10−3 | |
80 | 0.743 | 0.171 | 0.097 | 1.87 × 10−3 | |
100 | 0.795 | 0.182 | 0.096 | 2.56 × 10−3 |
Coal Samples | Temperature/°C | Fitting Equation | R2 |
---|---|---|---|
Xinjiang | 25 | 0.98259 | |
40 | 0.95297 | ||
60 | 0.99414 | ||
80 | 0.99448 | ||
100 | 0.95906 | ||
Liulin | 25 | 0.99582 | |
40 | 0.95973 | ||
60 | 0.99949 | ||
80 | 0.99507 | ||
100 | 0.95838 | ||
Zhaozhuang | 25 | 0.99104 | |
40 | 0.95459 | ||
60 | 0.99539 | ||
80 | 0.9991 | ||
100 | 0.98806 |
Coal Samples | Temperature/(°C) | Pressure /(MPa) | Adsorption Heat /(J/g) | Temperature Variation /(°C) | Temperature Variation Fitting Equation | R2 |
---|---|---|---|---|---|---|
Xinjiang | 25 | 4 | 58.705 | 95.767 | 0.98553 | |
40 | 4 | 36.507 | 65.191 | 0.98758 | ||
60 | 2 | 20.230 | 35.869 | 0.99414 | ||
80 | 2 | 13.319 | 24.529 | 0.99448 | ||
100 | 1 | 3.085 | 5.713 | 0.95906 | ||
Liulin | 25 | 4 | 74.431 | 87.463 | 0.9956 | |
40 | 4 | 40.704 | 53.138 | 0.95178 | ||
60 | 2 | 23.349 | 30.089 | 0.99949 | ||
80 | 2 | 15.333 | 17.624 | 0.99507 | ||
100 | 1 | 6.715 | 8.576 | 0.95838 | ||
Zhaozhuang | 25 | 4 | 61.027 | 97.800 | 0.99403 | |
40 | 4 | 37.140 | 59.234 | 0.93276 | ||
60 | 2 | 27.950 | 40.043 | 0.99539 | ||
80 | 2 | 19.026 | 25.607 | 0.9991 | ||
100 | 1 | 12.330 | 15.509 | 0.98806 |
Coal Samples | Temperature/(°C) | Pressure/(MPa) | Volume Expansion Coefficient /(K−1) | Thermal Expansion Rate/(%) | Thermal Expansion Rate Fitting Equation | R2 |
---|---|---|---|---|---|---|
Xinjiang | 25 | 4 | 1.17 × 10−4 | 1.12 | 0.98553 | |
40 | 4 | 8.49 × 10−4 | 5.53 | 0.98758 | ||
60 | 2 | 3.06 × 10−3 | 10.98 | 0.99414 | ||
80 | 2 | 5.16 × 10−3 | 12.66 | 0.99448 | ||
100 | 1 | 6.63 × 10−3 | 3.79 | 0.95906 | ||
Liulin | 25 | 4 | 5.61 × 10−5 | 0.49 | 0.9956 | |
40 | 4 | 4.17 × 10−4 | 2.22 | 0.95178 | ||
60 | 2 | 1.91 × 10−3 | 5.74 | 0.99949 | ||
80 | 2 | 2.29 × 10−3 | 4.04 | 0.99507 | ||
100 | 1 | 2.61 × 10−3 | 2.24 | 0.95838 | ||
Zhaozhuang | 25 | 4 | 5.25 × 10−5 | 0.51 | 0.99043 | |
40 | 4 | 1.36 × 10−3 | 8.05 | 0.93276 | ||
60 | 2 | 3.18 × 10−3 | 12.73 | 0.99539 | ||
80 | 2 | 5.61 × 10−3 | 14.37 | 0.9991 | ||
100 | 1 | 7.68 × 10−3 | 11.91 | 0.98806 |
Coal Samples | Temperature/(°C) | Pressure/(MPa) | Linear Expansion Coefficient /(K−1) | Permeability Loss Rate/(%) | Permeability Loss Rate Fitting Equation | R2 |
---|---|---|---|---|---|---|
Xinjiang | 25 | 4 | 3.91 × 10−5 | 1.49 | 0.98551 | |
40 | 4 | 2.83 × 10−4 | 7.24 | 0.9877 | ||
60 | 2 | 1.02 × 10−3 | 14.10 | 0.99468 | ||
80 | 2 | 1.72 × 10−3 | 16.16 | 0.99367 | ||
100 | 1 | 2.21 × 10−3 | 4.99 | 0.96285 | ||
Liulin | 25 | 4 | 1.87 × 10−5 | 0.65 | 0.9956 | |
40 | 4 | 1.39 × 10−4 | 2.93 | 0.95175 | ||
60 | 2 | 6.36 × 10−4 | 7.51 | 0.99957 | ||
80 | 2 | 7.64 × 10−4 | 5.31 | 0.99535 | ||
100 | 1 | 8.70 × 10−4 | 2.96 | 0.95944 | ||
Zhaozhuang | 25 | 4 | 1.75 × 10−5 | 0.68 | 0.99042 | |
40 | 4 | 4.53 × 10−4 | 10.45 | 0.93277 | ||
60 | 2 | 1.06 × 10−3 | 16.26 | 0.99583 | ||
80 | 2 | 1.87 × 10−3 | 18.24 | 0.99948 | ||
100 | 1 | 2.56 × 10−3 | 15.25 | 0.99002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Sun, Y.; Liu, Y. Study on the Thermal Expansion Characteristics of Coal during CO2 Adsorption. Processes 2024, 12, 1229. https://doi.org/10.3390/pr12061229
Song J, Sun Y, Liu Y. Study on the Thermal Expansion Characteristics of Coal during CO2 Adsorption. Processes. 2024; 12(6):1229. https://doi.org/10.3390/pr12061229
Chicago/Turabian StyleSong, Jinxing, Yajie Sun, and Yufang Liu. 2024. "Study on the Thermal Expansion Characteristics of Coal during CO2 Adsorption" Processes 12, no. 6: 1229. https://doi.org/10.3390/pr12061229
APA StyleSong, J., Sun, Y., & Liu, Y. (2024). Study on the Thermal Expansion Characteristics of Coal during CO2 Adsorption. Processes, 12(6), 1229. https://doi.org/10.3390/pr12061229