A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm
Abstract
:1. Introduction
2. Battery Characterization
2.1. Charge/Discharge Experimental Platform
2.2. Discharge Experiments at Various Discharge Rates
2.3. Temperature Discharge Experiments at Different Temperatures
3. Establishment of the Battery Model and Parameter Identification
3.1. Equivalent Circuit Modeling
3.2. Parameter Identification
3.3. Identification of Other Parameters
3.4. Accuracy Verification
4. SOC Estimation Based on the SMFEKF Algorithm
5. Testing and Analysis
5.1. SOC Estimation by SMFEKF
5.2. Algorithm Validation in Conjunction with BMS Platforms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEKF | adaptive extended Kalman filtering |
BMS | battery management system |
BTS | battery test system |
CKF | capacitive Kalman filter |
EKF | extended Kalman filtering |
EMF | electromotive force |
NF | neural network |
OCV | open-circuit voltage |
SMFEKF | Suboptimal Multiple Fading Factor Extended Kalman Filter |
SOC | state of charge |
SOH | battery state of health |
UDDS | Urban Dynamometer Driving Schedule |
References
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, X.; Ma, H.; Li, S. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 2015, 273, 793–803. [Google Scholar] [CrossRef]
- Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Stroe, A.I.; Teodorescu, R. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery. IEEE Trans. Ind. Appl. 2017, 54, 1583–1591. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Kong, J.; Li, j.; Zhou, F. Advances in SOC estimation methods for lithium-ion batteries. Chin. J. Power Supply Technol. 2018, 42, 296–300. [Google Scholar]
- Tong, S.; Klein, M.P.; Park, J.W. On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation. J. Power Sources 2015, 293, 416–428. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, S.; Chen, Y.; Zhu, J.; Xue, L. Estimation of SOC of lithium-ion battery packs based on improved ampere-time integration method. Chin. J. Power Supply Technol. 2018, 42, 183–184. [Google Scholar]
- Sepasi, S.; Ghorbani, R.; Liaw, B.Y. Improved extended Kalman filter for state of charge estimation of battery pack. J. Power Sources 2014, 255, 368–376. [Google Scholar] [CrossRef]
- Len, Y. Estimation of Lithium Battery SOC Based on CKF and the Research of Battery Management System. Ph.D. Dissertation, Jiangsu University, Zhenjiang, China, 2016. [Google Scholar]
- Ji, L.; Chellali, R. State of charge estimation of battery based on adaptive extended Kalman filter. Chin. J. Batter. 2018, 48, 240–243. [Google Scholar]
- Wei, J.; Fu, Z. Traceless Kalman Filtering for Lithium Battery State of Charge Estimation. Chin. J. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2018, 39, 45–49. [Google Scholar]
- Liu, S.; Yu, Y.; Li, H.; Li, Y.; Zhao, Z. Estimation of state of charge for lithium battery based on unscented Kalman filter. Chin. J. Power Supply Technol. 2018, 42, 40–45. [Google Scholar]
- Gu, Y.; Zhang, Y. Estimation of state of charge of lithium-ion battery based on dual extend Kalman filter. Chin. J. Power Supply Technol. 2016, 40, 986–989. [Google Scholar]
- Wang, L.; Lu, D.; Liu, L.; Liu, Q.; Liu, L.; Zhao, X. State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve. Electrochim. Acta 2019, 296, 1009–1017. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Li, Y.; Gong, C. Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 2018, 43, 417–429. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Tian, Y. Multi-Model Adaptive Kalman Filtering SOC Estimation Considering Battery Temperature and Rate Characteristics. Ph.D. Dissertation, Hunan University, Changsha, China, 2018. [Google Scholar]
- Fang, Y.; Cheng, X.; Yin, Y. SOC estimation of lithium-ion battery packs based on Thevenin model. Appl. Mech. Mater. 2013, 299, 211–215. [Google Scholar] [CrossRef]
- Putra, W.S.; Dewangga, B.R.; Cahyadi, A.; Wahyunggoro, O. Current estimation using Thevenin battery model. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE), Surakarta, Indonesia, 4–5 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 5–9. [Google Scholar]
- Li, D.; Ouyang, J.; Li, H.; Xie, J. Accuracy state of charge estimation used in energy storage system for electric transportation. In Proceedings of the Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Selvaraj, V.; Vairavasundaram, I. A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles. J. Energy Storage 2023, 72, 108777. [Google Scholar] [CrossRef]
Item | Parameter | |
---|---|---|
Lithium-ion battery (NMC) | Electrode materials | Li(NiCoMn)O2 |
Rated capacity | 11 Ah | |
Standard discharge current | 0.2 C~1 C | |
Discharge temperature | −10 °C~60 °C | |
Discharge cut-off voltage | 3.0 V | |
Standard voltage | 3.7 V | |
Standard charge current | 0.2 C~1 C | |
Cycle life (1 C/1 C, 100% DOD) | 2000 cycles | |
Charge cut-off voltage | 4.2 V | |
BTS | Used voltage range | 0–100 V |
Charge and discharge current range | 1–200 A | |
Accuracy of current and voltage | 1% (full-scale) | |
Sample time | 20 ms | |
Temperature | 10–40 °C |
Discharge rate (Ah) | 3 | 5.5 | 11 |
Capacity correction factor (K1) | 1.04 | 1.03 | 1 |
Temperature (T/°C) | 10 | 25 | 40 |
Temperature correction factor (KT) | 0.95 | 1 | 1.03 |
SOC | Discharge/V | Charge/V | Average/V |
---|---|---|---|
0.9 | 4.059 | 4.056 | 4.058 |
0.8 | 4.003 | 3.997 | 4.000 |
0.7 | 3.925 | 3.921 | 3.923 |
0.6 | 3.862 | 3.856 | 3.859 |
0.5 | 3.761 | 3.751 | 3.756 |
0.4 | 3.679 | 3.682 | 3.681 |
0.3 | 3.636 | 3.640 | 3.638 |
0.2 | 3.594 | 3.603 | 3.599 |
0.1 | 3.528 | 3.525 | 3.527 |
Variable | Sampling Point | ||||||||
---|---|---|---|---|---|---|---|---|---|
SOC | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
EMF | 4.058 | 4.000 | 3.923 | 3.859 | 3.756 | 3.681 | 3.638 | 3.599 | 3.527 |
Fitting Order | SSE | RMSE | R-Square |
---|---|---|---|
Third-order fitting | 0.001259 | 0.011828 | 0.99550 |
Fourth-order fitting | 0.000221 | 0.004956 | 0.99921 |
Fifth-order fitting | 0.000052 | 0.002406 | 0.99981 |
SOC | R0/mΩ | RP1/mΩ | CP1/F | RP2/mΩ | CP2/F |
---|---|---|---|---|---|
0.9 | 4.13 | 0.33 | 1151.52 | 4.00 | 3492.5 |
0.8 | 4.01 | 0.22 | 2182.82 | 3.9 | 3400.00 |
0.7 | 4.13 | 0.21 | 1952.38 | 3.5 | 3054.29 |
0.6 | 4.09 | 0.48 | 833.33 | 3.5 | 3231.42 |
0.5 | 4.32 | 0.45 | 555.56 | 3.7 | 3583.78 |
0.4 | 4.18 | 0.28 | 1392.86 | 2.9 | 3968.97 |
0.3 | 3.86 | 0. 33 | 1212.12 | 3.2 | 4371.88 |
0.2 | 4.63 | 0. 31 | 1193.55 | 3.3 | 4884.85 |
εmax | RMSE | MAE | |
---|---|---|---|
EKF | 0.06327 | 0.03571 | 0.031692 |
SMFEKF | 0.11873 | 0.00737 | 0.001295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Zeng, J.; Jian, Q.; Tang, L.; Hou, J.; Han, C.; Song, Q.; Luo, Y. A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm. Processes 2024, 12, 998. https://doi.org/10.3390/pr12050998
Wu W, Zeng J, Jian Q, Tang L, Hou J, Han C, Song Q, Luo Y. A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm. Processes. 2024; 12(5):998. https://doi.org/10.3390/pr12050998
Chicago/Turabian StyleWu, Weibin, Jinbin Zeng, Qifei Jian, Luxin Tang, Junwei Hou, Chongyang Han, Qian Song, and Yuanqiang Luo. 2024. "A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm" Processes 12, no. 5: 998. https://doi.org/10.3390/pr12050998
APA StyleWu, W., Zeng, J., Jian, Q., Tang, L., Hou, J., Han, C., Song, Q., & Luo, Y. (2024). A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm. Processes, 12(5), 998. https://doi.org/10.3390/pr12050998