Co-Product of Pracaxi Seeds: Quantification of Epicatechin by HPLC-DAD and Microencapsulation of the Extract by Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Standards
2.2. Obtaining Raw Material from Pracaxi Co-product
2.3. Preparation of Pracaxi Co-product Extract
2.4. Determination of Total Polyphenols
2.5. Determination of Total Flavonoids
2.6. Identification and Quantification of Epicatechin by High-Performance Liquid Chromatography (HPLC-DAD)
2.6.1. HPLC-DAD Analyses
2.6.2. Validation of the Epicatechin Quantification Method
Linearity
Precision
Accuracy
Robustness
Limits of Detection and Quantification
2.7. Determination of Total Antioxidant Activity
2.7.1. Antioxidant Activity by the ABTS Radical Cation Assay
2.7.2. Antioxidant Activity by the DPPH Radical Assay
2.7.3. Antioxidant Activity by the Ferric Reducing Antioxidant Power (FRAP) Assay
2.8. Preparation of Microparticles from the Pracaxi Co-product Extract
2.8.1. Drying Yield
2.8.2. Extraction of Phenolic Compounds from Microparticles
2.8.3. Microencapsulation Yield
2.9. Characterization of Microparticles
2.9.1. Content of Total Polyphenol (TP)
2.9.2. Content of Total Flavonoids (TF)
2.9.3. Moisture Content
2.9.4. Size, Polydispersity Index and Zeta Potential of Microparticles
2.9.5. Particle Morphology by Scanning Electron Microscopy
3. Results
3.1. Identification and Quantification of Epicatechin
3.2. Validation
3.3. Antioxidant Activity
3.4. Characterization of Microparticles
3.4.1. Contents of Total Polyphenols, Total Flavonoids and Microencapsulation Yield
3.4.2. Drying Yield and Moisture Content
3.4.3. Size, Polydispersity Index and Zeta Potential of Microparticles
3.4.4. Scanning Electron Microscopy Examination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantas, A.R.; Marangon, M.C.G.; Feliciano, A.L.P.; Lira-Guedes, A.C. Spatial distribution of a population of Pentaclethra macroloba (willd) Kuntze in a floodplain forest of the amazon estuary. Rev. Árvore 2017, 41, e410406. [Google Scholar] [CrossRef]
- Costa, M.N.F.S.; Muniz, M.A.P.; Negrão, C.A.B.; Da Costa, C.E.F.; Lamarão, M.L.N.; Morais, L.; Silva Junior, J.O.C.; Costa, R.M.R. Characterization of Pentaclethra macroloba oil. J. Therm. Anal. Calorim. 2014, 115, 2269–2275. [Google Scholar] [CrossRef]
- Sousa, M.S.B.; Vieira, L.M.; Lima, A. Total phenolics and in vitro antioxidant capacity of tropical fruit pulp wastes. Braz. J. Food Technol. 2011, 14, 202–210. [Google Scholar] [CrossRef]
- Costa, A.P.G.C.; Cruz, F.G.G.; Rufino, J.P.F.; Feijó, J.C.; Melo, R.D. Economic viability of tucumã residue flour in broiler chicken feed. Rev. Agropecuária Técnica 2017, 38, 225–233. [Google Scholar] [CrossRef]
- Meneghetti, C.C.; Domingues, J.L. Nutritional characteristics and use of agroindustry by-products in cattle feeding. Nutr. Rev. Eletrônica 2008, 5, 512–536. [Google Scholar]
- Viana, F.J.C.; Araujo, D.C.; Souza, A.R.; Reis, A.L.A.; Camargo, P.H.G.; Santana, T.S.B.; Biagiotti, D. Alternative feeds for semi-arid rabbit breeding. Rev. Bras. Cunicult. 2018, 14, 1–13. [Google Scholar]
- Matias, M.F.O.; Oliveira, E.L.; Gertrudes, E.; Magalhães, M.M.A. Use of fibres obtained from the cashew (Anacardium ocidentale L) and guava (Psidium guayava) fruits for enrichment of food products. Braz. Arch. Biol. Technol. 2005, 48, 143–150. [Google Scholar] [CrossRef]
- Menezes, C.R.; Durrant, L.R. Xylooligosaccharides: Production, applications and effects on human health. Cienc. Rural 2008, 38, 587–592. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, H.; Yuan, J.S. Removal of Congo red from aqueous solution by cattail root. J. Hazard. Mater. 2010, 173, 292–297. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Da Costa, R.S.; Santos, O.V.; Lanne, S.C.S.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Ribeiro-Costa, R.M.; Converti, A.; Silva Junior, J.O.C. Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum Schum.) agroindustrial by-product. Food Sci. Technol. 2020, 40, 401–407. [Google Scholar] [CrossRef]
- Moraes, G.V.M.; Jorge, G.M.; Gonzaga, R.V.; Dos Santos, D.A. Antioxidant potential of flavonoids and therapeutic applications. Res. Soc. Dev. 2022, 11, e238111436225. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Alvaréz, J.A.; Viudas-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT-Food Sci. Technol. 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Liu, Y.; She, X.R.; Huang, J.B.; Liu, M.C.; Zhan, M.E. Ultrasonic-extraction of phenolic compounds from Phyllanthus urinaria: Optimization model and antioxidant activity. Food Sci. Technol. 2018, 38, 286–293. [Google Scholar] [CrossRef]
- Manochai, B.; Ingkasupart, P.; Lee, S.H.; Hong, J.H. Evaluation of antioxidant activities, total phenolic content (TPC), and total catechin content (TCC) of 10 sugar apple (Annona squamosa L.) cultivar peels grown in Thailand. Food Sci. Technol. 2018, 38, 294–300. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Ordoñez-Quintana, E.; Salmeron, I.; Chavez-Flores, D.; Ramos, V.; Gutierrez, N.; Morales-Oyervides, L.; Delgado, E.; Kwofie, E.; Ngadi, M.; Perez-Vega, S.B. Supercritical and subcritical extraction of ursolic acid and polyphenols from apple pomace: Effect of variables on composition and antioxidant capacity. J. Food Process. Preserv. 2020, 44, e14296. [Google Scholar] [CrossRef]
- Silva, V.; Singh, R.K.; Gomes, N.; Soares, B.G.; Silva, A.A.; Falco, V.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Amaral, J.S.; et al. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants 2020, 9, 178. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Chen, J.; Lai, P. Microencapsulation of plum (Prunus salicina lindl.) phenolics by spray drying technology and storage stability. Food Sci. Technol. 2018, 38, 530–536. [Google Scholar] [CrossRef]
- Rezende, Y.R.R.S.; Nogueira, J.P.; Narain, N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem. 2018, 124, 281–291. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.C.; Pereira, R.R.; Carvalho, F.B.; Santos, A.S.; Ribeiro-Costa, R.M.; Junior, J.O.C.S. Green extraction by ultrasound, microencapsulation by spray drying and antioxidant activity of the tucumã coproduct (Astrocaryum vulgare Mart.) almonds. Biomolecules 2021, 11, 545. [Google Scholar] [CrossRef]
- Çam, M.; Içyer, N.C.; Erdoǧan, F.F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Sci. Technol. 2014, 55, 117–123. [Google Scholar] [CrossRef]
- Engel, B.; Baccar, N.M.; Marquardt, L.; Rohlfes, A.L.B. Use of the spray dryer in the food industry: A brief review. Rev. Jovens Pesqui. 2017, 7, 2–11. [Google Scholar] [CrossRef]
- Archaina, D.; Vasile, F.; Jiménez-Guzmán, J.; Alamilla-Beltrán, L.; Schebor, C. Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. J. Food Process. Preserv. 2019, 43, e14065. [Google Scholar] [CrossRef]
- Pereira, K.C.; Ferreira, D.C.M.; Alvarenga, G.F.; Pereira, M.S.S.; Barcelos, M.C.S.; Da Costa, J.M.G. Microencapsulation and release controlled by the diffusion of food ingredients produced by spray drying: A review. Braz. J. Food Technol. 2018, 21, e2017083. [Google Scholar] [CrossRef]
- Brazilian Pharmacopoeia Phytotherapy Form, 2nd ed.; Agência Nacional de Vigilância Sanitária: Brasilia, Brazil, 2021; p. 126. Available online: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/formulario-fitoterapico/2024-fffb2-1-er-3-atual-final-versao-com-capa-em-word-2-jan-2024.pdf (accessed on 10 May 2024).
- Ferreira, L.M.M.C.; Pereira, R.R.; Carvalho-Guimarães, F.B.; Remígio, M.S.N.; Barbosa, W.L.R.; Ribeiro-Costa, R.M.; Silva-Junior, J.O.C. Microencapsulation by spray drying and antioxidant activity of phenolic compounds from tucuma coproduct (Astrocaryum vulgare Mart.) almonds. Polymers 2022, 14, 2905. [Google Scholar] [CrossRef]
- Funari, C.S.; Ferro, V.O. Propolis analysis. Food Sci. Technol. 2006, 26, 171–178. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- ICH–Harmonised Tripartite Guidance. Validation of Analytical Procedures: Text and Methodology Q2(R1). In International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 10 May 2024).
- ANVISA (National Health Surveillance Agency). Resolution RE 166. Validation of Analytical Methods; ANVISA (National Health Surveillance Agency): Brasília, Brazil, 2017. Available online: https://antigo.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401 (accessed on 10 May 2024).
- Re, R.; Pellegrini, N.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Silva, L.P.; Stringheta, P.C.; Teófilo, R.F.; De Oliveira, I.R.N. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. J. Food Eng. 2013, 117, 538–544. [Google Scholar] [CrossRef]
- Benzie, F.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidante power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gabbay Alves, T.V.; Da Costa, R.S.; Aliakbarian, B.; Casazza, A.A.; Perego, P.; Carréra Silva Júnior, J.O.; Ribeiro Costa, R.M.; Converti, A. Microencapsulation of Theobroma cacao L. waste extract: Optimization using response surface methodology. J. Microencapsul. 2017, 34, 111–120. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of olive oil solid waste using high pressure-high temperature reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Butstraen, C.; Salaün, F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 2014, 99, 608–616. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; da Silva, G.L.; Rodrigues, E.; Kuskoski, E.M.; Feet, R. Solvent influence on total polyphenol content, anthocyanins, and antioxidant activity of grape (Vitis vinifera) bagasse extracts from Tannat and Ancelota-different varieties of Vitis vinifera varieties. Food Sci. Technol. 2008, 28, 238–244. [Google Scholar] [CrossRef]
- Da Costa, R.S.; Teixeira, C.B.; Gabbay Alves, T.V.; Ribeiro-Costa, R.M.; Casazza, A.A.; Aliakbarian, B.; Converti, A.; Silva Júnior, J.O.C.; Perego, P. Optimization of spray drying conditions to microencapsulate cupuassu (Theobroma grandiflorum) seed by-product extract. Nat. Prod. Res. 2019, 33, 2600–2608. [Google Scholar] [CrossRef]
- Corti, R.; Lammer, A.; Hollenberg, N.K.; Luscher, T.F. Cocoa and cardiovascular Health. Circulation 2009, 119, 1433–1441. [Google Scholar] [CrossRef]
- Addai, F.K. Natural cocoa as diet-mediated antimalarial prophylaxis. Med. Hypotheses 2010, 74, 825–830. [Google Scholar] [CrossRef]
- Ellam, S.; Williamson, G. Cocoa and human health. Annu. Rev. Nutr. 2013, 33, 105–128. [Google Scholar] [CrossRef]
- Panneerselvam, M.; Ali, S.S.; Finley, J.C.; Kellerhals, S.E.; Migita, M.Y.; Head, B.P.; Patel, P.M.; Roth, D.M.; Patel, H.H. Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Mol. Nutr. Food Res. 2013, 57, 1007–1014. [Google Scholar] [CrossRef]
- Ribani, M.; Bottoli, C.H.; Collins, I.C.S.; Jadim, I.C.S.F.; Melo, L.F.C. Validation for chromatographic and electrophoretic methods. New Chem. 2004, 27, 771–780. [Google Scholar] [CrossRef]
- Agourram, A.; Ghirardello, D.; Rantsiou, K.; Zeppa, G.; Belviso, S.; Romane, A. Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. Int. J. Food Prop. 2013, 16, 1092–1104. [Google Scholar] [CrossRef]
- Copra-Janicijevic, A.; Culum, D.; Vidic, D.; Tahirović, A.; Klepo, L.; Basic, N. Chemical composition and antioxidant activity of the endemic Crataegus microphylla Koch subsp. malyana KI Chr. & Janjić from Bosnia. Ind. Crops Prod. 2018, 113, 75–79. [Google Scholar] [CrossRef]
- Tittona, N.F.; Schumacher, A.B.; Dani, C. Comparative study of the amount of total polyphenols and antioxidant activity in different chocolates: Milk, bittersweet, bittersweet and soy. Ciência Em Mov. 2014, 2, 77–84. [Google Scholar] [CrossRef]
- Abdille, M.H.; Singh, R.P.; Jayaprakasha, G.K.; Jena, B.S. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem. 2005, 90, 891–896. [Google Scholar] [CrossRef]
- Meng, Y.; Cloutier, S. Gelatin and other proteins for microencapsulation. In Microencapsulation in the Food Industry: A Practical Implementation Guide; Gaonkar, A.G., Vasisht, N., Khare, A.R., Sobel, R., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 227–236. [Google Scholar]
- Kang, Y.R.; Lee, Y.K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; Souza, C.R.F.; Oliveira, W.P. Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chem. Eng. Res. Des. 2015, 93, 366–376. [Google Scholar] [CrossRef]
- Sampaio, R.C.A.; Da Costa, R.S.; De Souza, C.R.F.; Junior, A.P.D.; Ribeiro-Costa, R.M.; Da Costa, C.E.F.; De Oliveira, W.P.; Converti, A. Thermal characterization of Arrabidaea chica (Humb. & Bonpl.) B. Verl. dry extracts obtained by spray dryer. J. Therm. Anal. Calorim. 2016, 123, 2469–2475. [Google Scholar] [CrossRef]
- Tupuna, D.S.; Paese, K.; Guterres, S.S.; Jablonski, A.A.; Flôres, S.H.; de Oliveira Rios, A. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind. Crops Prod. 2018, 111, 846–855. [Google Scholar] [CrossRef]
- Álvarez-Henao, M.V.; Saavedra, N.; Medina, S.; Cartagena, C.J.; Alzate, L.M.; Londonõ-Londonõ, L. Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chem. 2018, 256, 181–187. [Google Scholar] [CrossRef]
- Oliveira, O.W.; Petrovick, P.R. Spray drying of plant extracts: Basic remarks and application. Rev. Bras. Pharmacogn. 2010, 20, 641–650. [Google Scholar] [CrossRef]
- Liu, C.H.; Wu, C.T. Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf. A Physicochem. Eng. Asp. 2010, 353, 149–156. [Google Scholar] [CrossRef]
- Fernández, K.; Aburto, J.; Plessing, C.V.; Rockel, M.; Aspé, E. Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts. Food Chem. 2016, 207, 75–85. [Google Scholar] [CrossRef]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray drying-microencapsulation of cinnamon infusions (Cinna-momum zeylanicum) with maltodextrin. LWT-Food Sci. Technol. 2015, 64, 571–577. [Google Scholar] [CrossRef]
Precision | Average (μg/mL) | a CV% |
---|---|---|
Repeatability | 130.60 ± 3.75 | 2.87 |
Reproducibility | 130.50 ± 3.60 | 2.76 |
Standard (μg/mL) | 31.25 | 125 | 500 |
Average (μg/mL) | 31.61 | 125.43 | 551.20 |
Recovery (%) | 101.17 | 100.35 | 110.24 |
Parameters | Variation | Area (mAU) | Retention Time (min) | a CV % |
---|---|---|---|---|
Oven temperature–Mobile phase flow rate | 28 °C– 0.7 mL/min | 1,008,325 | 21.68 | 1.15 |
1,030,253 | 21.68 | |||
1,013,049 | 21.64 | |||
32 °C– 0.9 mL/min | 1,053,434 | 21.23 | 1.21 | |
1,061,086 | 21.24 | |||
1,078,367 | 21.33 |
Sample | ABTS (μMTrolox/g) | DPPH (μMTrolox/g) | FRAP (μMTrolox/g) |
---|---|---|---|
Standard (ascorbic acid) | 2380.04 ± 0.0000 | 1132.68 ± 0.005 | 2408.57 ± 0.058 |
Co-product extract | 910.82 ± 7.33 | 906.68 ± 1.20 | 1549.89 ± 0.020 |
Phenolic Compounds | Microencapsulation Yield | |||
---|---|---|---|---|
Total Polyphenols (mg GAE/g) | Total Flavonoids (mg QE/g) | Total Polyphenols (%) | Total Flavonoids (%) | |
Crude extract | 20.61 ± 0.20 | 28.29 ± 0.70 | - | - |
Microparticles | 18.48 ± 0.10 | 13.73 ± 0.10 | 89.66 ± 0.20 | 48.53 ± 0.30 |
Particle Size (μm) | Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|
0.38 ± 0.11 | 0.43 ± 0.12 | −42.80 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, R.L.; Ferreira, L.M.d.M.C.; Silva-Júnior, J.O.C.; Converti, A.; Ribeiro-Costa, R.M. Co-Product of Pracaxi Seeds: Quantification of Epicatechin by HPLC-DAD and Microencapsulation of the Extract by Spray Drying. Processes 2024, 12, 997. https://doi.org/10.3390/pr12050997
da Silva RL, Ferreira LMdMC, Silva-Júnior JOC, Converti A, Ribeiro-Costa RM. Co-Product of Pracaxi Seeds: Quantification of Epicatechin by HPLC-DAD and Microencapsulation of the Extract by Spray Drying. Processes. 2024; 12(5):997. https://doi.org/10.3390/pr12050997
Chicago/Turabian Styleda Silva, Raimundo Lopes, Lindalva Maria de Meneses Costa Ferreira, José Otávio Carréra Silva-Júnior, Attilio Converti, and Roseane Maria Ribeiro-Costa. 2024. "Co-Product of Pracaxi Seeds: Quantification of Epicatechin by HPLC-DAD and Microencapsulation of the Extract by Spray Drying" Processes 12, no. 5: 997. https://doi.org/10.3390/pr12050997
APA Styleda Silva, R. L., Ferreira, L. M. d. M. C., Silva-Júnior, J. O. C., Converti, A., & Ribeiro-Costa, R. M. (2024). Co-Product of Pracaxi Seeds: Quantification of Epicatechin by HPLC-DAD and Microencapsulation of the Extract by Spray Drying. Processes, 12(5), 997. https://doi.org/10.3390/pr12050997