Investigating Precise Decision-Making in Greenhouse Environments Based on Intelligent Optimization Algorithms
Abstract
1. Introduction
2. Collection and Analysis of Greenhouse Environmental Information
2.1. Overview of Greenhouse Information
2.2. Data Collection and Analysis
3. Construction and Optimization of Greenhouse Environmental Decision-Making Model
3.1. Construction of Model Library Based on Machine Learning
3.2. Construction of Greenhouse Decision-Making Optimization Model
4. Verification and Analysis
4.1. Tomato Greenhouse Environmental Data Processing and Analysis
4.2. Tomato Growth Environment Prediction Model and Verification
4.3. Tomato Environmental Decision-Making Optimization Model and Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.; Wu, Y.; Liu, Q.; Liu, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.X.; Liu, X.J. Developing an efficiency and energy-saving nitrogen management strategy for winter wheat based on the UAV multispectral imagery and machine learning algorithm. Precis. Agric. 2023, 24, 2019–2043. [Google Scholar] [CrossRef]
- Venkatesan, S.K.; Lim, J.; Ko, H.; Cho, Y.Y. A Machine Learning Based Model for Energy Usage Peak Prediction in Smart Farms. Electronics 2022, 11, 218. [Google Scholar] [CrossRef]
- Bolandnazar, D.; Sadrnia, H.; Rohami, A.; Marinrllo, F.; Taki, A. Application of Artificial Intelligence for Modeling the Internal Environment Condition of Polyethylene Greenhouses. Agriculture 2023, 13, 1583. [Google Scholar] [CrossRef]
- Zhang, L.X.; Tian, X.; Li, Y.X.; Chen, Y.Q.; Chen, Y.Y.; Ma, J.C. Estimation of Disease Severity for Downy Mildew of Greenhouse Cucumber Based on Visible Spectral and Machine Learning. Spectrosc. Spectr. Anal. 2020, 40, 227–232. [Google Scholar]
- Li, R.Z.; Ji, Z.J.; Hu, S.K.; Huang, X.D.; Yang, J.L.; Li, W.F. Tomato Maturity Recognition Model Based on Improved YOLOv5 in Greenhouse. Agronomy 2023, 13, 603. [Google Scholar] [CrossRef]
- Raza, A.; Shahid, M.A.; Safdar, M.; Tariq, M.A.R.; Zaman, M.; Hassan, M.U. Exploring the Impact of Digital Farming on Agricultural Engineering Practices. Biol. Life Sci. Forum. 2023, 27, 10. [Google Scholar]
- Zhang, Y.; Wang, T.; Li, Z.; Wang, T.L.; Cao, N. Based on machine learning algorithms for estimating leaf phosphorus concentration of rice using optimized spectral indices and continuous wavelet transform. Front. Plant Sci. 2023, 14, 1185915. [Google Scholar] [CrossRef] [PubMed]
- Abbood, H.M.; Nouri, N.M.; Riahi, M.; Riahi, M.; Alaghrband, S.H. An intelligent monitoring model for greenhouse microclimate based on RBF Neural Network for optimal setpoint detection. J. Process Control. 2023, 129, 103037. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ladický, L.; Torr, P.H.S. Locally Linear Support Vector Machines. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Scholkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kosmider, C. Induction of Decision Trees. In Proceedings of the IIS’2002 Symposium on Intelligent Information Systems, Sopot, Poland, 3–6 June 2002; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Li, Z.; Duan, W.; Fang, G.; Wang, C.; He, G.; Wei, W. Using Film-Mulched Drip Irrigation to Improve the Irrigation Water Productivity of Cotton in the Tarim River Basin, Central Asia. Remote Sens. 2023, 15, 4615. [Google Scholar] [CrossRef]
- Kiefer, J.; Wolfowitz, J. Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 1952, 3, 462–466. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Cai, X.; Li, H.; Wei, C.; Zhang, Q.; Deb, K.; Goodman, E. Push and pull search for solving constrained multi-objective optimization problems. Swarm Evol. Comput. 2019, 44, 665–679. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
Soil Moisture (%) | Soil Salinity (μs/cm) | Photosynthetically Active Radiation (μmol/m2/s) | Total Radiation (J/m2) | Greenhouse Temperature (°C) | Leaf Moisture (%) | Precipitation (ml) | Relative Humidity (%) | Soil Temperature (°C) | Temperature Outside the Greenhouse (°C) | Wind Direction | Wind Speed (m/s) | Growth Stage | Day and Night |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.06 | 0.76 | 19 | 0.2 | 16.7 | 0 | 0 | 90.3 | 21.7 | 16.1 | 78.8 | 0.82 | 3 | 0 |
17.05 | 0.76 | 19 | 0.3 | 16.7 | 0 | 0 | 90.3 | 21.6 | 15.7 | 79 | 0.42 | 3 | 0 |
17.04 | 0.76 | 19 | 0.2 | 16.7 | 0 | 0 | 90.6 | 21.5 | 15.4 | 79 | 0.42 | 3 | 0 |
17.01 | 0.76 | 19 | 0.2 | 15.1 | 1 | 0 | 90.8 | 21.4 | 15.2 | 78.9 | 0.88 | 3 | 0 |
16.98 | 0.76 | 19 | 0.2 | 15.1 | 1 | 0 | 91.1 | 21.3 | 15 | 78.8 | 0.53 | 3 | 0 |
16.98 | 0.76 | 19 | 0.2 | 15.1 | 1 | 0 | 91.3 | 21.2 | 14.8 | 78.8 | 0.32 | 3 | 0 |
Soil Temperature | Greenhouse Temperature | Photosynthetically Active Radiation | Leaf Moisture | Soil Salinity | Wind Speed | Total Radiation | Wind Direction | Precipitation | Humidity inside the Greenhouse | Temperature Outside the Greenhouse |
---|---|---|---|---|---|---|---|---|---|---|
1.320 | 1.305 | 0.261 | 0.212 | 0.207 | 0.013 | 0.002 | 0 | 0 | 0 | 0 |
Growth Stages | Daytime Temperature (°C) | Nighttime Temperature (°C) | Air Humidity (%) | Soil Moisture (%) | N/(mg·L−1) | P/(mg·L−1) | K/(mg·L−1) |
---|---|---|---|---|---|---|---|
Seedling growth stage | 25–30 | 12–16 | 50–65 | 60–85 | 110–130 | 100–150 | 120–150 |
Flowering and fruit setting stage | 25–28 | 12–18 | 60–65 | 70–80 | 120–130 | 70–90 | 140–230 |
Fruit expansion stage | 28–30 | 16–20 | 70–75 | 80–90 | 120–180 | 60–80 | 170–220 |
Growth Stage | Temperature Upper Limit (°C) | Temperature Lower Limit (°C) | Day and Night | Soil Moisture Upper Limit (%) | Soil Moisture Lower Limit (%) | Air Humidity Upper Limit (%) | Air Humidity Lower Limit (%) | N Upper Limit (mg·L−1) | N lower limit (mg·L−1) | P Upper Limit (mg·L−1) | P Lower Limit (mg·L−1) | K Upper Limit (mg·L−1) | K Lower Limit (mg·L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 25 | 0 | 65 | 50 | 85 | 60 | 130 | 110 | 150 | 100 | 150 | 120 |
1 | 28 | 25 | 0 | 65 | 60 | 80 | 70 | 130 | 120 | 90 | 70 | 230 | 140 |
2 | 30 | 28 | 0 | 75 | 70 | 90 | 80 | 180 | 120 | 80 | 60 | 220 | 170 |
0 | 16 | 12 | 1 | 65 | 50 | 85 | 60 | 130 | 110 | 150 | 100 | 150 | 120 |
1 | 18 | 12 | 1 | 65 | 60 | 80 | 70 | 130 | 120 | 90 | 70 | 230 | 140 |
2 | 20 | 16 | 1 | 75 | 70 | 90 | 80 | 180 | 120 | 80 | 60 | 220 | 170 |
Fitting Time (s) | Prediction Time (s) | max_Error | mae | mse | rmse | r2 | mgd | mape |
---|---|---|---|---|---|---|---|---|
2.634 | 0.014 | 2.369 | 0.579 | 0.675 | 0.821 | 0.892 | 0.003 | 0.042 |
2.908 | 0.01 | 1.26 | 0.485 | 0.323 | 0.569 | 0.975 | 0.002 | 0.034 |
2.676 | 0.01 | 2.399 | 0.339 | 0.221 | 0.47 | 0.902 | 0.001 | 0.017 |
2.938 | 0.01 | 2.291 | 0.516 | 0.459 | 0.678 | 0.903 | 0.002 | 0.033 |
2.861 | 0.009 | 2.162 | 0.568 | 0.475 | 0.689 | 0.836 | 0.001 | 0.03 |
Fitting Time (s) | Prediction Time (s) | max_Error | Mae | mse | rmse | r2 | mgd | mape |
---|---|---|---|---|---|---|---|---|
0.118 | 0.005 | 5.5 | 0.768 | 0.991 | 0.995 | 0.974 | 0.002 | 0.033 |
0.115 | 0.005 | 10.2 | 0.958 | 1.909 | 1.381 | 0.951 | 0.004 | 0.043 |
0.14 | 0.005 | 8.9 | 1.037 | 2.435 | 1.56 | 0.898 | 0.006 | 0.054 |
0.121 | 0.005 | 6.9 | 1.056 | 2.395 | 1.547 | 0.823 | 0.006 | 0.062 |
0.12 | 0.005 | 8.8 | 1.187 | 2.965 | 1.722 | 0.929 | 0.005 | 0.051 |
Features | Models |
---|---|
Growth stage | Gradient boosting tree |
Temperature | Gradient boosting tree |
Soil moisture | Decision tree |
Air humidity | Decision tree |
N | Decision tree |
P | Decision tree |
K | Gradient boosting tree |
Conductivity | Decision tree |
Features | Temperature (°C) | Soil Moisture (%) | Air Humidity (%) | N/(mg·L−1) | P/(mg·L−1) | K/(mg·L−1) | Conductivity/(ms·cm−1) |
---|---|---|---|---|---|---|---|
Values | 25 | 60 | 80 | 120 | 90 | 140 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Bi, C.; Tang, Y. Investigating Precise Decision-Making in Greenhouse Environments Based on Intelligent Optimization Algorithms. Processes 2024, 12, 977. https://doi.org/10.3390/pr12050977
Zhu Z, Bi C, Tang Y. Investigating Precise Decision-Making in Greenhouse Environments Based on Intelligent Optimization Algorithms. Processes. 2024; 12(5):977. https://doi.org/10.3390/pr12050977
Chicago/Turabian StyleZhu, Zhenyi, Chunguang Bi, and You Tang. 2024. "Investigating Precise Decision-Making in Greenhouse Environments Based on Intelligent Optimization Algorithms" Processes 12, no. 5: 977. https://doi.org/10.3390/pr12050977
APA StyleZhu, Z., Bi, C., & Tang, Y. (2024). Investigating Precise Decision-Making in Greenhouse Environments Based on Intelligent Optimization Algorithms. Processes, 12(5), 977. https://doi.org/10.3390/pr12050977