Progress of Optimization in Manufacturing Industries and Energy System
1. Introduction
2. Optimization Model
3. Solution of Optimization
4. Constrain Conditions
5. Data-Driven Optimization and Deep Leaning Methods
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.; Dai, J. Production Sourcing Strategy for an Apparel Original Brand Manufacturer in the Presence of Technology Spillover. IEEE Trans. Eng. Manag. 2023, 70, 1283–1294. [Google Scholar] [CrossRef]
- Fragapane, G.; Ivanov, D.; Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. Ann. Oper. Res. 2022, 308, 125–143. [Google Scholar] [CrossRef]
- Sana, S.S. Optimum buffer stock during preventive maintenance in an imperfect production system. Math. Methods Appl. Sci. 2022, 45, 8928–8939. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X. Can Direct Subsidies or Tax Incentives Improve the R&D Efficiency of the Manufacturing Industry in China? Processes 2023, 11, 181. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Du, X.; Zhang, R.; Huang, Z.; Duan, S.; Yang, W.; Wang, P.; Zhang, J. Improved Active Islanding Detection Technique with Different Current Injection Waveform. Processes 2023, 11, 1838. [Google Scholar] [CrossRef]
- Gong, H.; Ping, Z.; Zhao, T.; Hou, S.; Zu, F.; Qiu, P.; Qin, J. Research on Contact Anchoring Theory and Contact Optimization of Underwater Pipeline Recovery Tools. Processes 2023, 11, 3166. [Google Scholar] [CrossRef]
- Singh, A. An overview of the optimization modelling applications. J. Hydrol. 2012, 466, 167–182. [Google Scholar] [CrossRef]
- Neumaier, A.; Azmi, B.; Kimiaei, M. An active set method for bound-constrained optimization. Optim. Methods Softw. 2024, 1–25. [Google Scholar] [CrossRef]
- Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and performance of intelligent algorithms: A comprehensive review. Artif. Intell. Rev. 2018, 49, 79–103. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, Y.; Chen, L.; Huang, B.; Huang, Y.; Guan, L. A Review on Intelligent Scheduling and Optimization for Flexible Job Shop. Int. J. Control. Autom. Syst. 2023, 21, 3127–3150. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.V.; Xu, X.; Zhang, L. Scheduling in cloud manufacturing: State-of-the-art and research challenges. Int. J. Prod. Res. 2019, 57, 4854–4879. [Google Scholar] [CrossRef]
- Shim, S.-O.; Jeong, B.; Bang, J.-Y.; Park, J. Scheduling Jobs with a Limited Waiting Time Constraint on a Hybrid Flowshop. Processes 2023, 11, 1846. [Google Scholar] [CrossRef]
- Wen, X.; Sun, B.; Gu, B.; Lv, Y. Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading. Processes 2023, 11, 344. [Google Scholar] [CrossRef]
- Rakshit, P.; Konar, A.; Das, S. Noisy evolutionary optimization algorithms—A comprehensive survey. Swarm Evol. Comput. 2017, 33, 18–45. [Google Scholar] [CrossRef]
- Khan, A.; Shafi, I.; Khawaja, S.G.; de la Torre Díez, I.; Flores, M.A.L.; Galvlán, J.C.; Ashraf, I. Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants. Sensors 2023, 23, 7710. [Google Scholar] [CrossRef]
- Mullen, R.J.; Monekosso, D.; Barman, S.; Remagnino, P. A review of ant algorithms. Expert Syst. Appl. 2009, 36, 9608–9617. [Google Scholar] [CrossRef]
- Yue, Y.; Cao, L.; Lu, D.; Hu, Z.; Xu, M.; Wang, S.; Li, B.; Ding, H. Review and empirical analysis of sparrow search algorithm. Artif. Intell. Rev. 2023, 56, 10867–10919. [Google Scholar] [CrossRef]
- Abdullahi, M.; Ngadi, M.A.; Dishing, S.I.; Abdulhamid, S.I.M.; Usman, M.J. A survey of symbiotic organisms search algorithms and applications. Neural Comput. Appl. 2020, 32, 547–566. [Google Scholar] [CrossRef]
- Salgotra, R.; Sharma, P.; Raju, S.; gandomi, A.H. A Contemporary Systematic Review on Meta-heuristic Optimization Algorithms with Their MATLAB and Python Code Reference. Arch. Comput. Methods Eng. 2024, 31, 1749–1822. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.-G.; Gandomi, A.H. A Survey of Learning-Based Intelligent Optimization Algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Hong, Y.; Sohan, H.S.; Tong, Y.; Hu, Y.; Zhang, M.; Zhang, J.; Xiang, D.; Fu, H.; et al. An Overview of Technological Parameter Optimization in the Case of Laser Cladding. Coatings 2023, 13, 496. [Google Scholar] [CrossRef]
- Afzal, A.; Buradi, A.; Jilte, R.; Shaik, S.; Kaladgi, A.R.; Arıcı, M.; Lee, C.T.; Nižetić, S. Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review. Renew. Sustain. Energy Rev. 2023, 173, 112903. [Google Scholar] [CrossRef]
- Lai, V.; Huang, Y.F.; Koo, C.H.; Ahmed, A.N.; El-Shafie, A. A Review of Reservoir Operation Optimisations: From Traditional Models to Metaheuristic Algorithms. Arch. Comput. Methods Eng. 2022, 29, 3435–3457. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bao, X.; Zhou, Q.; Yang, J. Composite Fault Diagnosis of Aviation Generator Based on EnFWA-DBN. Processes 2023, 11, 1577. [Google Scholar] [CrossRef]
- Mistarihi, M.Z.; Salameh, H.A.B.; Alsaadi, M.A.; Beyca, O.F.; Heilat, L.; Al-Shobaki, R. Energy-Efficient Bi-Objective Optimization Based on the Moth–Flame Algorithm for Cluster Head Selection in a Wireless Sensor Network. Processes 2023, 11, 534. [Google Scholar] [CrossRef]
- Gao, M.; Yang, X. APSO-SL: An Adaptive Particle Swarm Optimization with State-Based Learning Strategy. Processes 2024, 12, 400. [Google Scholar] [CrossRef]
- Runge, J.; Gerhardus, A.; Varando, G.; Eyring, V.; Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ. 2023, 4, 487–505. [Google Scholar] [CrossRef]
- Bhandari, A.; Tripathy, B.; Adate, A.; Saxena, R.; Gadekallu, T.R. From Beginning to BEGANing: Role of Adversarial Learning in Reshaping Generative Models. Electronics 2023, 12, 155. [Google Scholar] [CrossRef]
- Witthaut, D.; Hellmann, F.; Kurths, J.; Kettemann, S.; Meyer-Ortmanns, H.; Timme, M. Collective nonlinear dynamics and self-organization in decentralized power grids. Rev. Mod. Phys. 2022, 94, 015005. [Google Scholar] [CrossRef]
- Rahman, K.; Hezam, I.M.; Božanić, D.; Puška, A.; Milovančević, M. Some Logarithmic Intuitionistic Fuzzy Einstein Aggregation Operators under Confidence Level. Processes 2023, 11, 1298. [Google Scholar] [CrossRef]
- Mistarihi, M.Z.; Al-Tahat, M.D.; Al-Nimer, S.H. Improving Process Efficiency at Pediatric Hospital Emergency Department Using an Integrated Six-Sigma Simulation Methodology. Processes 2023, 11, 399. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, Y.; Lee, H.P. Dynamic optimization based on quantum computation—A comprehensive review. Comput. Struct. 2024, 292, 107255. [Google Scholar] [CrossRef]
- Gambella, C.; Ghaddar, B.; Naoum-Sawaya, J. Optimization problems for machine learning: A survey. Eur. J. Oper. Res. 2021, 290, 807–828. [Google Scholar] [CrossRef]
- Nian, R.; Liu, J.; Huang, B. A review on reinforcement learning: Introduction and applications in industrial process control. Comput. Chem. Eng. 2020, 139, 106886. [Google Scholar] [CrossRef]
- Buşoniu, L.; De Bruin, T.; Tolić, D.; Kober, J.; Palunko, I. Reinforcement learning for control: Performance, stability, and deep approximators. Annu. Rev. Control. 2018, 46, 8–28. [Google Scholar] [CrossRef]
- Guo, S.; Agarwal, M.; Cooper, C.; Tian, Q.; Gao, R.X.; Grace, W.G.; Guo, Y.B. Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm. J. Manuf. Syst. 2022, 62, 145–163. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, K.; Zhang, S. An Approach to Data Modeling via Temporal and Spatial Alignment. Processes 2024, 12, 62. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, T.; Zhao, L. From Segmentation to Classification: A Deep Learning Scheme for Sintered Surface Images Processing. Processes 2024, 12, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Yang, Q.; You, Y. Progress of Optimization in Manufacturing Industries and Energy System. Processes 2024, 12, 953. https://doi.org/10.3390/pr12050953
Zhang D, Yang Q, You Y. Progress of Optimization in Manufacturing Industries and Energy System. Processes. 2024; 12(5):953. https://doi.org/10.3390/pr12050953
Chicago/Turabian StyleZhang, Dapeng, Qiangda Yang, and Yuwen You. 2024. "Progress of Optimization in Manufacturing Industries and Energy System" Processes 12, no. 5: 953. https://doi.org/10.3390/pr12050953
APA StyleZhang, D., Yang, Q., & You, Y. (2024). Progress of Optimization in Manufacturing Industries and Energy System. Processes, 12(5), 953. https://doi.org/10.3390/pr12050953