Study on the Adaptability Evaluation of Micro-Dispersed-Gel-Strengthened-Alkali-Compound System and the Production Mechanism of Crude Oil
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Preparation Method of MDG
2.3. Experimental Method of Adaptability Evaluation
2.4. Experimental Methods of Basic Physical and Chemical Properties
2.5. Experimental Method of Crude-Oil-Production Mechanism
3. Results and Discussion
3.1. Adaptability Evaluation
3.1.1. Adaptability of Sodium Carbonate to MDG
3.1.2. The Suitability of Sodium Hydroxide and MDG
3.2. Physicochemical Properties
3.2.1. Ability to Reduce Interfacial Tension
Characteristics of Interfacial Tension of MDGSC-Compound Flooding System
Characteristics of Interfacial Tension of MDGSH-Compound Flooding System
3.2.2. Viscosity Characteristics
3.2.3. Emulsifying Ability
Emulsifying Ability of MDGSC-Compound System
Emulsifying Ability of MDGSH-Compound System
3.2.4. Wetting Change Ability
Wetting Change Ability of MDGSC-Compound System
Wetting Change Ability of MDGSH-Compound System
3.3. Crude-Oil-Production Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ming, Y. The optimization of the well pattern thinning at high water cut stages in CD Heterogeneity oilfield. Unconv. Resour. 2024, 4, 100063. [Google Scholar] [CrossRef]
- He, M.; Pu, W.; Yang, X.; Liu, R.; Xu, M.; Li, X.; Wu, T.; Gou, R. Experimental study on the effect of high water cut on the emulsifying properties of crude oil. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131917. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Zhang, L.; Zhang, Q.; Guo, Z.; Wang, B.; Sun, T. Remaining oil distribution characteristics in an oil reservoir with ultra-high water-cut. Energy Geosci. 2022, 5, 100116. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, L.; Jia, P. Quantitative investigation of core heterogeneity’s impact on water flooding using nuclear magnetic resonance imaging. Chem. Eng. Sci. 2023, 282, 119186. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, L.; Jia, P.; Wang, P.; Hou, J. Influence of micro-heterogeneity of fractured-porous reservoirs on the water flooding mobilization law. Sustain. Energy Technol. Assess. 2022, 53, 102694. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, D.; Zhang, X.; Zhao, X.; Zhou, R. Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology. Energy 2023, 278, 127960. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Zhou, J.; Li, J.; Wang, A. Recovery efficiency of tight oil reservoirs with different injection fluids: An experimental investigation of oil-water distribution feature. J. Pet. Sci. Eng. 2020, 195, 107678. [Google Scholar] [CrossRef]
- Lei, X.; Zhao, C.; Zhang, Q.; Wang, P.; Xiong, R. Effect of high-multiple water injection on rock pore structure and oil displacement efficiency. Energy Geosci. 2022, 5, 100137. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Wang, S.; Guo, Y.; Han, X.; Li, Q.; Cheng, Y.; Dong, Z.; Li, X.; Zhang, X. Numerical insights into factors affecting collapse behavior of horizontal wellbore in clayey silt hydrate-bearing sediments and the accompanying control strategy. Ocean. Eng. 2024, 297, 117029. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Owusu, A.B. A modified Ester-branched thickener for rheology and wettability during CO2 fracturing for improved fracturing property. Environ. Sci. Pollut. Res. 2019, 26, 20787–20797. [Google Scholar] [CrossRef]
- Kamari, A.; Sattari, M.; Mohammadi, A.H.; Ramjugernath, D. Reliable method for the determination of surfactant retention in porous media during chemical flooding oil recovery. Fuel 2015, 158, 122–128. [Google Scholar] [CrossRef]
- Bhatkar, S.A.; Bhadane, N.P.; Kshirsagar, L.K.; Wadgaonkar, V.S. Modifications of petroleum industry effluent treatment Method: An approach for quality improvement of process water for ASP flooding and chemical EOR. Mater. Today Proc. 2023, 77, 371–375. [Google Scholar] [CrossRef]
- Guo, Y.-B.; Yue, X.-A.; Yang, C.-C. New method to quantitatively characterize the emulsification capability of chemical flooding agents. J. Pet. Sci. Eng. 2021, 196, 107810. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Gao, W.; Cao, J.; Sun, B.; Zhang, J. Experimental investigation on the effect of interfacial properties of chemical flooding for enhanced heavy oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132335. [Google Scholar] [CrossRef]
- Pang, S.; Pu, W.; Jiang, F.; Gao, H.; Wang, Y.; Chen, Y.; Wei, P. Effect of water content on features of W/O emulsion during water flooding in heavy oil reservoir: Bulk properties and mobility control characteristics. J. Pet. Sci. Eng. 2021, 207, 109075. [Google Scholar] [CrossRef]
- Tian, W.; Lu, S.; Zhang, J.; Gao, Y.; Huang, W.; Wen, Z.; Li, J.; Li, J. NMR characterization of fluid mobility in low-permeability conglomerates: An experimental investigation of spontaneous imbibition and flooding. J. Pet. Sci. Eng. 2022, 214, 110483. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Mohammadi, A.H.; Manshad, A.K. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. J. Pet. Sci. Eng. 2020, 189, 106901. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Cui, Z. Foaming systems for foam flooding with both high foaming performance and ultralow oil/water interfacial tension. J. Mol. Liq. 2022, 355, 118920. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, Q.; Chen, Z.; Wang, J.; Dong, X.; Chen, F. Pore-scale experimental study on EOR mechanisms of combining thermal and chemical flooding in heavy oil reservoirs. J. Pet. Sci. Eng. 2020, 185, 106649. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, K.; Hou, J.; An, Z.; Zhai, M.; Liu, W. Experimental study on combining heterogeneous phase composite flooding and streamline adjustment to improve oil recovery in heterogeneous reservoirs. J. Pet. Sci. Eng. 2020, 194, 107478. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Cao, R.; Han, P.; Yan, W.; Sun, G.; Xia, H.; Xu, T. Microscopic plugging adjustment mechanism in a novel heterogeneous combined flooding system. Energy Rep. 2022, 8, 15350–15364. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Yang, S.-L.; Xu, Z.-X.; Cheng, S.-Q. Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil–water two-phase flow. Pet. Sci. 2023, 21, 343–351. [Google Scholar] [CrossRef]
- Seright, R.; Wang, D. Polymer flooding: Current status and future directions. Pet. Sci. 2023, 20, 910–921. [Google Scholar] [CrossRef]
- Li, X.; Yan, Z.; Wei, K.; Zhu, X.; Zhu, L.; Huo, T.; Li, Y.; Xue, Q. Pore-scale investigation on the flow behavior and oil displacement of ultralow IFT surfactant flooding based on CFD simulation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132555. [Google Scholar] [CrossRef]
- An, Z.-B.; Zhou, K.; Wu, D.-J.; Hou, J. Production characteristics and displacement mechanisms of infilling polymer-surfactant-preformed particle gel flooding in post-polymer flooding reservoirs: A review of practice in Ng3 block of Gudao Oilfield. Pet. Sci. 2023, 20, 2354–2371. [Google Scholar] [CrossRef]
- Li, Y.-B.; Jia, H.-F.; Pu, W.-F.; Wei, B.; Wang, S.-S.; Yuan, N. Investigation of feasibility of alkali–cosolvent flooding in heavy oil reservoirs. Pet. Sci. 2023, 20, 1608–1619. [Google Scholar] [CrossRef]
- Wang, T.; Xuan, Y.; Lv, D.; Xie, Z.; Zhao, G.; Dai, C. Potential application of dispersed particle gel strengthened alkali as a novel combination flooding system for enhanced oil recovery. J. Mol. Liq. 2022, 368, 120816. [Google Scholar] [CrossRef]
- Gong, Y.; Li, L.; Huang, W.; Zou, J.; Zhong, X.; Wang, L.; Kang, D.; Zhang, Z.; Zhang, Z. A study of alkali-silica nanoparticle-polymer (ANP) flooding for enhancing heavy oil recovery. J. Pet. Sci. Eng. 2022, 213, 110465. [Google Scholar] [CrossRef]
- Sharma, H.; Panthi, K.; Mohanty, K.K. Surfactant-less alkali-cosolvent-polymer floods for an acidic crude oil. Fuel 2018, 215, 484–491. [Google Scholar] [CrossRef]
- Ahmed, S.; Hanamertani, A.S.; Alameri, W.; Al-Shalabi, E.W.; Hashmet, M.R. Experimental investigation of flow diversion and dynamic retention during polymer flooding in high salinity fractured carbonates using CT imaging. Geoenergy Sci. Eng. 2023, 221, 211349. [Google Scholar] [CrossRef]
- Zhu, W.; Li, H.; Chen, Z.; Song, Z. Pore-scale experiments reveal distinct flow field of polymer flooding with viscoelasticity loss by high salinity. Colloids Surf. A Physicochem. Eng. Asp. 2023, 668, 131473. [Google Scholar] [CrossRef]
- Zhu, D.-Y.; Luo, R.-T.; Liu, Y.; Qin, J.-H.; Zhao, Q.; Zhang, H.-J.; Wang, W.-S.; Wang, Z.-Y.; Zhu, M.-E.; Wang, Y.-P.; et al. Development of re-crosslinkable dispersed particle gels for conformance improvement in extremely high-temperature reservoirs. Pet. Sci. 2022, 19, 2922–2931. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Li, L.; Liu, J.W.; Chen, J.; Xu, Z.Z.; Wu, Y.N.; Dai, C.L. Probing the effect of Young’s modulus on the plugging performance of micro-nano-scale dispersed particle gels. Pet. Sci. 2022, 19, 688–696. [Google Scholar] [CrossRef]
- Yang, N.; Ma, H.; Bo, Q.; Li, J.; Sun, N.; Dai, C.; Zhao, G. A novel fluorescent dispersed particle gel: Fluorescence monitoring method and breakthrough flow channel identification. J. Mol. Liq. 2023, 385, 122219. [Google Scholar] [CrossRef]
- Sun, N.; Yao, X.; Liu, J.; Li, J.; Yang, N.; Zhao, G.; Dai, C. Breakup and coalescence mechanism of high-stability bubbles reinforced by dispersed particle gel particles in the pore-throat micromodel. Geoenergy Sci. Eng. 2023, 223, 211513. [Google Scholar] [CrossRef]
- Wang, W.; Guo, X.; Duan, P.; Kang, B.; Zheng, D.; Zafar, A. Investigation of plugging performance and enhanced oil recovery of multi-scale polymer microspheres in low-permeability reservoirs. Nat. Gas Ind. B 2023, 10, 223–232. [Google Scholar] [CrossRef]
- Li, Y.-K.; Hou, J.-R.; Wu, W.-P.; Qu, M.; Liang, T.; Zhong, W.-X.; Wen, Y.-C.; Sun, H.-T.; Pan, Y.-N. A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity. Pet. Sci. 2023, 21, 683–693. [Google Scholar] [CrossRef]
- Li, B.; Zou, C.; Liang, H.; Chen, W.; Lin, S.; Liao, Y. Mass transfer from nanofluid single drops in low interfacial tension liquid–liquid extraction process. Chem. Phys. Lett. 2021, 771, 138530. [Google Scholar] [CrossRef]
- Jia, R.; Kang, W.; Li, Z.; Yang, H.; Gao, Z.; Zheng, Z.; Yang, H.; Zhou, B.; Jiang, H.; Turtabayev, S. Ultra-low interfacial tension (IFT) zwitterionic surfactant for imbibition enhanced oil recovery (IEOR) in tight reservoirs. J. Mol. Liq. 2022, 368, 120734. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhong, L.; Wang, P.; Gao, P.; Guo, Q. Ultra-low interfacial tension Anionic/Cationic surfactants system with excellent emulsification ability for enhanced oil recovery. J. Mol. Liq. 2023, 382, 121989. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, Z.; Tang, S.; Hu, R.; Jin, L.; Wang, S.; Wang, R. Synthesis, interfacial activity and rheological properties of low interfacial tension viscoelastic Gemini surfactants. J. Pet. Sci. Eng. 2022, 209, 109845. [Google Scholar] [CrossRef]
- Tetteh, J.; Bai, S.; Kubelka, J.; Piri, M. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants. J. Colloid Interface Sci. 2022, 619, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, J.; Kubelka, J.; Piri, M. Effect of oil carboxylate hydrophobicity on calcite wettability and its reversal by cationic surfactants: An experimental and molecular dynamics simulation investigation. J. Mol. Liq. 2023, 380, 121663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wu, T.; Liu, Y.; Cheng, C.; Zhao, G. Study on the Adaptability Evaluation of Micro-Dispersed-Gel-Strengthened-Alkali-Compound System and the Production Mechanism of Crude Oil. Processes 2024, 12, 871. https://doi.org/10.3390/pr12050871
Wang T, Wu T, Liu Y, Cheng C, Zhao G. Study on the Adaptability Evaluation of Micro-Dispersed-Gel-Strengthened-Alkali-Compound System and the Production Mechanism of Crude Oil. Processes. 2024; 12(5):871. https://doi.org/10.3390/pr12050871
Chicago/Turabian StyleWang, Teng, Tianjiang Wu, Yunlong Liu, Chen Cheng, and Guang Zhao. 2024. "Study on the Adaptability Evaluation of Micro-Dispersed-Gel-Strengthened-Alkali-Compound System and the Production Mechanism of Crude Oil" Processes 12, no. 5: 871. https://doi.org/10.3390/pr12050871
APA StyleWang, T., Wu, T., Liu, Y., Cheng, C., & Zhao, G. (2024). Study on the Adaptability Evaluation of Micro-Dispersed-Gel-Strengthened-Alkali-Compound System and the Production Mechanism of Crude Oil. Processes, 12(5), 871. https://doi.org/10.3390/pr12050871