Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition
Abstract
:1. Introduction
2. Geometric Model
3. Mathematical Model
4. Load and Boundary Conditions
5. Model Validation and Thermal Stress Analysis
5.1. Model Validation
5.2. Thermal Stress Analysis
6. Results and Discussion
6.1. The Influence of Solar Simulator Power
6.2. Effect of the Emissivity of the Inner Wall Material of the Solar Reactor on Thermal Stress
6.3. The Influence of Gas Inlet Velocity
6.4. Effect of Working Pressure
6.5. Effect of Thermocouple Aperture Diameter on Solar Reactor
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdelrazik, A.S.; Osama, A.; Allam, A.N.; Shboul, B.; Sharafeldin, M.A.; Elwardany, M. ANSYS-Fluent numerical modeling of the solar thermal and hybrid photovoltaic-based solar harvesting systems. J. Therm. Anal. Calorim. 2023, 148, 11373–11424. [Google Scholar] [CrossRef]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234–9245. [Google Scholar] [CrossRef]
- Roman, B.; Rohini, B.C.; Venstrom, L.J.; Stephen, J.S.; Peter, T.K. Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria. J. Sol. Energy Eng. 2015, 137, 031007. [Google Scholar]
- Rajendran, D.R.; Ganapathy Sundaram, E.; Jawahar, P.; Vathilingam, S.; Omid, M. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design. J. Therm. Anal. Calorim. 2020, 140, 33–51. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Shmroukh, A.N.; Ghazaly, N.M.; Kabeel, A.E. Active solar still with solar concentrating systems, Review. J. Therm. Anal. Calorim. 2023, 148, 8777–8792. [Google Scholar] [CrossRef]
- Kurkute, N.; Priyam, A. A thorough review of the existing concentrated solar power technologies and various performance enhancing techniques. J. Therm. Anal. Calorim. 2022, 147, 14713–14737. [Google Scholar] [CrossRef]
- Lipiński, W.; Davidson, J.H.; Haussener, S.; Klausner, J. Review of heat transfer research for solar thermochemical applications. J. Therm. Sci. Eng. Appl. Appl. 2013, 5, 021005. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Q.B.; Lei, J.; Jin, H.G. Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration. Energy Convers. Manag. 2015, 102, 17–25. [Google Scholar] [CrossRef]
- Likkasit, C.; Maroufmashat, A.; Elkamel, A.; Ku, H.M.; Fowler, M. Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries. Energy Convers. Manag. 2018, 168, 395–406. [Google Scholar]
- Ebadi, M.; Mehrpooya, M.; Kani, A.H. Sensitivity analysis and optimization of geometric and operational parameters in a thermochemical heat storage redox reactor used for concentrated solar power plants. J. Therm. Anal. Calorim. 2022, 147, 6415–6435. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.; Singh, A.; Rahmatian, N.; Nick, A.Y.; Randhir, K.; Mei, R.; James, F.K.; David, W.H.; Pereasch, J. A transient heat transfer model for high temperature solar thermochemical reactors. Int. J. Hydrogen Energy 2016, 41, 2307–2325. [Google Scholar] [CrossRef]
- Dake, L.S.; Lind, M.A.; Maag, C.R. A Comparison of the Effect of Outdoor Exposure on the Optical Properties of Solar Mirrors and Transparent Encapsulant Materials Technical Report No. PNL-4074 UC-62; Pacific Northwest Laboratory: Richland, WA, USA, 1981. [Google Scholar]
- Dake, L.S.; Lind, M.A. The Optical Losses of Solar Mirrors Due to Atmospheric Contamination at Liberal, Kansas and Oologah, Oklahoma, Technical Report No. PNL-4073 UC-62; Pacific Northwest Laboratory: Richland, WA, USA, 1981. [Google Scholar]
- Bethea, R.M.; Barriger, M.T.; Williams, P.F.; Chin, S. Environmental effects on solar concentrator mirrors. Sol. Energy 1981, 27, 497–511. [Google Scholar] [CrossRef]
- Berry, M.; Dursch, H. Exposure testing of solar collector plastic films. Sol. Energy Mater. 1980, 3, 247–261. [Google Scholar] [CrossRef]
- Schissel, P.; Czanderna, A.W. Reactions at the silver/polymer interface: A review. Sol. Energy Mater. 1980, 3, 225–245. [Google Scholar] [CrossRef]
- García-Segura, A.; Fernández-García, A.; Ariza, M.J.; Sutter, F.; Valenzuela, L. Durability studies of solar reflectors: A review. Renew. Sustain. Energy Rev. 2016, 62, 453–467. [Google Scholar] [CrossRef]
- Daabo, A.M.; Mahmoud, A.; Al-Dadah, R.K.; Ahmad, A. Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application. Energy 2017, 119, 523–539. [Google Scholar] [CrossRef]
- Wang, F.Q.; Shuai, Y.; Yuan, Y.; Yang, Y.; Tan, H.P. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation. Sol. Energy 2010, 84, 1809–1815. [Google Scholar] [CrossRef]
- Wang, F.Q.; Shuai, Y.; Yuan, Y.; Liu, B. Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation. Mater. Des. 2012, 33, 284–291. [Google Scholar] [CrossRef]
- Du, S.; Wang, Z.; Shen, S. Thermal and structural evaluation of composite solar receiver tubes for Gen3 concentrated solar power systems. Renew. Energy 2022, 189, 117–128. [Google Scholar] [CrossRef]
- Hischier, I.; Poživil, P.; Steinfeld, A. A modular ceramic cavity-receiver for high- temperature high-concentration solar applications. J. Sol. Energy Eng. 2012, 134, 011004. [Google Scholar] [CrossRef]
- Chen, Y.X.; Wang, D.; Zou, C.Z.; Gao, W.; Zhang, Y.P. Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions. Energy 2022, 246, 123344. [Google Scholar] [CrossRef]
- Zhang, H.; Shuai, Y.; Bachirou, G.L.; Jiang, B.S. Thermal characteristics and thermal stress analysis of solar thermochemical reactor under high-flux concentrated solar irradiation. Sci. China Technol. Sci. 2020, 63, 1776–1786. [Google Scholar] [CrossRef]
- Zou, Y.; Qin, C.Y.; Liu, H.T.; Zhang, B.; Wu, X.H. Concentrating photovoltaic systems: A review of temperature effects and components. J. Therm. Anal. Calorim. 2023, 149, 1301–1329. [Google Scholar] [CrossRef]
- Wan, Z.J.; Fang, J.B.; Tu, N.; Wei, J.J.; Qaisrani, M.A. Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants. Sol. Energy 2018, 170, 430–441. [Google Scholar] [CrossRef]
- Conroy, T.; Collins, M.N.; Grimes, R. A review of steady-state thermal and mechanical modelling on tubular solar receivers. Renew. Sustain. Energy Rev. 2020, 119, 109591. [Google Scholar] [CrossRef]
- Sedighia, M.; Padillaa, R.V.; Taylorb, R.A.; Lake, M.; Izadgoshasb, I.; Rose, A. High-temperature point-focus pressurised gas-phase solar receivers: A comprehensive review. Energy Convers. Manag. 2019, 185, 678–717. [Google Scholar] [CrossRef]
- Lougou, B.G.; Shuai, Y.; Xing, H.; Yuan, Y.; Tan, H.P. Thermal performance analysis of solar thermochemical reactor for syngas production. Int. J. Heat Mass Transf. 2017, 111, 410–418. [Google Scholar] [CrossRef]
- Lougou, B.G.; Shuai, Y.; Chen, X.; Yuan, Y.; Tan, H.P.; Xing, H. Analysis of radiation heat transfer and temperature distributions of solar thermochemical reactor for syngas production. Front. Energy 2017, 11, 480–492. [Google Scholar] [CrossRef]
- Lougou, B.G.; Shuai, Y.; Pan, R.; Chaffa, G.; Tan, H.P. Heat transfer and fluid flow analysis of porous medium solar thermochemical reactor with quartz glass cover. Int. J. Heat Mass Transf. 2018, 127, 61–74. [Google Scholar] [CrossRef]
- Villafán-Vidales, H.I.; Abanades, S.; Caliot, C.; Romero-Paredes, H. Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver. Appl. Therm. Eng. 2011, 31, 3377–3386. [Google Scholar] [CrossRef]
- Wang, M.; Siddiqui, K. The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system. Renew. Energy 2010, 35, 2501–2513. [Google Scholar] [CrossRef]
- Chandran, R.B.; De Smith, R.M.; Davidson, J.H. Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery. Int. J. Heat Mass Transf. 2015, 81, 404–414. [Google Scholar] [CrossRef]
- Besarati, S.M.; Goswami, D.Y.; Stefanakos, E.K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles. J. Sol. Energy Eng. 2015, 137, 031018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Lin, Y.; Yao, X.; Liu, Y.; Gao, F.; Zhang, H. Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition. Processes 2024, 12, 1016. https://doi.org/10.3390/pr12051016
Huang X, Lin Y, Yao X, Liu Y, Gao F, Zhang H. Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition. Processes. 2024; 12(5):1016. https://doi.org/10.3390/pr12051016
Chicago/Turabian StyleHuang, Xing, Yan Lin, Xin Yao, Yang Liu, Fanglin Gao, and Hao Zhang. 2024. "Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition" Processes 12, no. 5: 1016. https://doi.org/10.3390/pr12051016
APA StyleHuang, X., Lin, Y., Yao, X., Liu, Y., Gao, F., & Zhang, H. (2024). Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition. Processes, 12(5), 1016. https://doi.org/10.3390/pr12051016