Microstructural Approach Application for Morphological Change Determinations of Grapes during Drying
Abstract
:1. Introduction
1.1. Scanning Electron Imaging
1.2. Image Analysis
2. Material and Methods
2.1. Material
2.2. Drying Procedure
2.3. Rehydration Process
2.4. Sample Preparation for SEM Imaging
2.5. Imaging Process
2.6. Image Processing Techniques
2.7. Procedure Followed for Determination of Outline of Cells
2.8. Pre-Processing
2.9. Pyramid Reduction
2.10. Cell Boundary Modelling
2.10.1. Technique 1: Watershed Segmentation Method
2.10.2. Technique 2: Edge Detection Methods
Closing
Skeleton
Remove Small Regions
2.10.3. Technique 3: Edge Detection Methods—Remove Inside Regions
2.11. Determination of Morphological Properties
3. Results and Discussion
3.1. Dehydration and Rehydration
3.2. Image Processing
3.3. Microstructural Changes and Determination of Morphological Properties
3.4. Area
3.5. Perimeter
3.6. Axis Length
3.7. Eccentricity
The Results of Image Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyadarshini, A.; Rajauria, G.; O’Donnell, C.P.; Tiwari, B.K. Emerging food processing technologies and factors impacting their industrial adoption. Crit. Rev. Food Sci. Nutr. 2019, 59, 3082–3101. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.M. Drying and Dried Products under the Microscope. Food Sci. Technol. 2003, 9, 137–143. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Nagy, S.A.; Karim, M.A. Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Res. Int. 2018, 105, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Singh, S.V. Osmotic dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2014, 51, 1654–1673. [Google Scholar] [CrossRef] [PubMed]
- García, A.H. Anhydrobiosis in bacteria: From physiology to applications. J. Biosci. 2011, 36, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.N.; Silvaa, C.; Serenob, A.M.; Aguilera, J.M. Quantification of microstructural changes during first stage air drying of grape tissue. J. Food Eng. 2004, 62, 159–164. [Google Scholar] [CrossRef]
- Senadeera, W.; Banks, J. Analysis of Micro-Structural Changes and Measurement of their Parameters of a Food Material. In Proceedings of the 5th Nordic Drying Conference (NDC 2011), Helsinki, Finland, 19–21 June 2011. [Google Scholar]
- Niamnuy, C.; Devahastin, S.; Soponronnarit, S. Some recent advances in microstructural modification and monitoring of foods during drying: A review. J. Food Eng. 2014, 123, 148–156. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Mondor, M.; Ratti, C. Shrinkage of cellular food during air drying. J. Food Eng. 2018, 230, 8–17. [Google Scholar] [CrossRef]
- Sawhney, R.; Pangavhane, D.; Sarsavadia, P. Drying Studies of Single Layer Thompson Seedless Grapes. In Proceedings of the International Solar Food Processing Conference, Indore, India, 14–16 January 2009. [Google Scholar]
- Khodaei, J.; Akhijahani, H. Some Physical Properties of Rasa Grape (Vitis vinifera L.). World Appl. Sci. J. 2012, 18, 818–825. [Google Scholar]
- Banks, J.; Senadeera, W. Measurement of Structural Changes to a Food Material during Dehydration. In Proceedings of the 4th International Conference on Computational Methods, Good Coast, Australia, 25–28 November 2012. [Google Scholar]
- Aguilera, J.M. Rational food design and food microstructure. Trends Food Sci. Technol. 2022, 122, 256–264. [Google Scholar] [CrossRef]
- Tepe, T.K.; Tepe, B. The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat Mass Transf. 2020, 56, 3047–3057. [Google Scholar] [CrossRef]
- Lopez-Quiroga, E.; Prosapio, V.; Fryer, P.J.; Norton, I.T.; Bakalis, S. Model discrimination for drying and rehydration kinetics of freeze-dried tomatoes. J. Food Process Eng. 2020, 43, e13192. [Google Scholar] [CrossRef]
- Tortoe, C.; Orchard, J. Microsturctual changes of osmotically dehydrated tissuies of apple, banana, and potato. Scanning 2006, 28, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Australian Microscopy and Microanalysis Research Facility. MyScope: SEM. 2013. Available online: http://www.ammrf.org.au/myscope/sem/background/ (accessed on 8 April 2013).
- Georget, D.M.R.; Smith, A.C.; Waldron, K.W. Thermal transitions in freeze-dried carrot and its cell wall components. Thermochim. Acta 1999, 332, 203–210. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Pawlaka, G. Effect of mode of drying on microstructure of potato. Dry. Technol. 2005, 23, 847–869. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Mujumdar, A.; Lim, R. Analysis of Temperature Distribution and SEM Images of Microwave Freeze Drying Banana Chips. Food Bioprocess Technol. 2013, 6, 1144–1152. [Google Scholar] [CrossRef]
- Karunasena, H.C.P.; Hesami, P.; Senadeera, W.; Gu, Y.; Brown, R.J.; Oloyede, A. Scanning electron microscopic study of microstructure of gala apples during hot air drying. Dry. Technol. 2014, 32, 455–468. [Google Scholar] [CrossRef]
- Favaa, J.; Hodarac, K.; Nietob, A.; Guerrerob, S.; Alzamorab, S.M.; Castro, M.A. Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruitstreated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Res. Int. 2011, 44, 2938–2948. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Meschino, G.; Ballarin, V. Solving the over segmentation problem in applications of Watershed Transform. J. Biomed. Graph. Comput. 2013, 3, 29–40. [Google Scholar] [CrossRef]
- Adellson, B. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar]
- Zhou, R.W.; Quek, Q.; Ng, G.S. A novel single-pass thinning algorithm and an effective set of performance criteria. Pattern Recognit. Lett. 1995, 16, 1267–1275. [Google Scholar] [CrossRef]
- Fisher, R.; Perkins, S.; Walker, A.; Wolfart, E. Thinning. 2003. Available online: http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm (accessed on 20 April 2023).
- Forero, M.; Hidalgo, A. Image Processing Methods for Automatic Cell Counting In Vivo or In Situ Using 3D Confocal Microscopy. In Advanced Biomedical Engineering; Gargiulo, G., Ed.; InTech: Croatia, Poland, 2011; pp. 183–204. Available online: http://www.intechopen.com/books/advanced-biomedicalengineering/image-processing-methods-for-automatic-cell-counting-in-vivo-or-in-situ-using-3d-confocalmicroscopy (accessed on 10 January 2024).
- Farhan, M.; Ruusuvuori, P.; Emmenlauer, M.; Ramo, P.; Dehio, C.; Yli-Harja, O. Multi-scale Gaussian representation and outline-learning based cell image segmentation. BMC Bioinform. 2013, 14, S6. Available online: http://www.biomedcentral.com/1471-2105/14/S10/S6 (accessed on 12 January 2023). [CrossRef] [PubMed]
- Margaritis, E.; Jones, M. Beyond cereals: Crop processing and Vitis vinifera L. Ethnography, experiment and charred grape remains from Hellenistic Greece. J. Archeol. Sci. 2006, 33, 784–805. [Google Scholar] [CrossRef]
- Adiletta, G.; Russo, P.; Senadeera, W.; Di Matteo, M. Drying characteristics and quality of grape under physical pretreatment. J. Food Eng. 2016, 172, 9–18. [Google Scholar] [CrossRef]
Constants | A | K = Drying Rate Constant (h−1) | (R2) |
---|---|---|---|
70 °C | 1.2534 | 0.336 | 0.9205 |
55 °C | 1.1818 | 0.329 | 0.9562 |
Sample | Properties (Watershed Segmentation) | ||||
---|---|---|---|---|---|
Mean Area (μm2) | Mean Perimeter (μm) | Mean Major Axis (μm) | Mean Minor Axis (μm) | Mean Eccentricity | |
250× A > 500 P < 300 | |||||
H0T1 | 1.868 × 104 | 749.4680 | 301.2960 | 108.1984 | 0.9333 |
H2T1 | 1.6276 × 104 | 527.2443 | 160.6473 | 121.5663 | 0.6537 |
H4T1 | 1.5813 × 104 | 449.5994 | 144.2168 | 97.0850 | 0.7395 |
H6T1 | 1.7529 × 104 | 479.0513 | 170.7560 | 104.8985 | 0.7891 |
H8T1 | 1.3052 × 104 | 973.4885 | 315.7655 | 213.9352 | 0.7355 |
H10T1 | 1.3524 × 104 | 434.2135 | 166.2669 | 78.3663 | 0.8820 |
H2T2 | 1.8380 × 104 | 581.5718 | 188.4769 | 144.8233 | 0.6400 |
H4T2 | 2.0445 × 104 | 651.2853 | 194.6465 | 142.0478 | 0.6837 |
H6T2 | 1.8574 × 104 | 586.0782 | 203.8516 | 124.2818 | 0.7927 |
H8T2 | 1.7274 × 104 | 481.4237 | 153.9302 | 118.1231 | 0.6412 |
H10T2 | 1.8603 × 104 | 1.1199 × 103 | 307.8014 | 221.9638 | 0.6928 |
400× A > 1000 P < 350 | |||||
H0T1 | 1.4060 × 104 | 610.5335 | 220.1148 | 114.3835 | 0.8544 |
H2T1 | 1.4446 × 104 | 841.5988 | 304.9690 | 125.9145 | 0.9108 |
H4T1 | 1.2241 × 104 | 335.2362 | 103.3524 | 86.5694 | 0.5463 |
H6T1 | 1.2945 × 104 | 421.5962 | 178.6316 | 55.3865 | 0.9507 |
H8T1 | 1.0646 × 104 | 468.9098 | 157.0120 | 93.8365 | 0.8018 |
H10T1 | 9.6000 × 104 | 390.7552 | 140.0699 | 80.2164 | 0.8198 |
400× A > 700 P < 370 | |||||
H2T2 | 1.5567 × 104 | 308.4978 | 110.4789 | 64.3719 | 0.8127 |
H4T2 | 1.0204 × 104 | 305.8831 | 116.8105 | 57.4392 | 0.8707 |
H6T2 | 9.1721 × 103 | 377.3641 | 135.2469 | 78.9786 | 0.8118 |
H8T2 | 8.4145 × 103 | 369.4578 | 144.5740 | 66.3178 | 0.8886 |
H10T2 | 1.4217 × 104 | 447.2165 | 140.1456 | 101.2784 | 0.6912 |
Sample | Magnification and Thresholds | Mean Area (μm2) | Mean Perimeter (μm) | Mean Major Axis (μm) | Mean Minor Axis (μm) | Mean Eccentricity |
---|---|---|---|---|---|---|
H0T1 | 250× A > 500 P < 300 | 1.9498 × 104 | 662.1648 | 281.1988 | 71.7017 | 0.9669 |
H2T1 | 250× A >500 P < 240 | 1.7644 × 104 | 449.5994 | 146.4707 | 121.9424 | 0.5540 |
H4T1 | 250× A > 500 P < 240 | 1.8022 × 104 | 477.0161 | 154.2266 | 138.7953 | 0.4360 |
H6T1 | 250× A > 500 P < 180 | 1.4570 × 104 | 609.2269 | 216.0205 | 111.8562 | 0.8555 |
H8T1 | 250× A > 500 P < 180 | 1.1111 × 104 | 438.1443 | 158.7734 | 86.7433 | 0.8376 |
H10T1 | 250× A > 500 P < 160 | 1.1753 × 104 | 580.5193 | 203.7704 | 139.8929 | 0.7271 |
H2T2 | 250× A > 800 P < 300 | 2.9047 × 104 | 1.1775 × 103 | 390.1254 | 190.4161 | 0.8728 |
H4T2 | 250× A > 500 P < 240 | 1.6276 × 104 | 576.0129 | 185.8455 | 113.3312 | 0.7925 |
H6T2 | 250× A > 500 P < 240 | 1.9711 × 104 | 361.0750 | 108.5730 | 105.3326 | 0.2425 |
H8T2 | 250× A > 500 P < 240 | 1.5844 × 104 | 387.1718 | 121.8561 | 101.5215 | 0.5531 |
H10T2 | 250× A > 300 P < 200 | 1.0593 × 104 | 774.1750 | 275.1776 | 107.5439 | 0.9305 |
H0T1 | 400× A > 1500 P < 400 | 1.5197 × 104 | 582.8798 | 211.0376 | 108.1086 | 0.8588 |
H2T1 | 400× A >700 P < 300 | 6.7466 × 103 | 411.7972 | 167.1921 | 61.9964 | 0.9287 |
H4T1 | 400× A > 800 P < 250 | 9.2492 × 103 | 461.3646 | 179.7302 | 52.3723 | 0.9566 |
H6T1 | 400× A > 800 P < 250 | 7.9043 × 103 | 324.9705 | 124.4181 | 62.2680 | 0.8658 |
H8T1 | 400× A > 500 P < 250 | 6.8593 × 103 | 349.7104 | 105.7494 | 92.9892 | 0.4762 |
H10T1 | 400× A > 500 P < 240 | 7.5400 × 103 | 346.5231 | 115.4658 | 56.2731 | 0.8732 |
H2T2 | 400× A > 700 P < 300 | 9.7355 × 103 | 299.6762 | 117.6791 | 57.9392 | 0.8704 |
H4T2 | 400× A > 700 P < 300 | 9.3901 × 103 | 386.7582 | 114.4119 | 108.7739 | 0.3100 |
H6T2 | 400× A > 700 P < 300 | 6.7462 × 104 | 427.3982 | 138.5129 | 107.8773 | 0.6272 |
H8T2 | 400× A > 700 P < 240 | 7.5915 × 103 | 289.4105 | 117.9694 | 52.5847 | 0.8952 |
H10T2 | 400× A > 700 P < 240 | 1.3703 × 104 | 358.1542 | 119.0250 | 98.8277 | 0.5573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senadeera, W.; Banks, J.; Adiletta, G.; Brewer, K. Microstructural Approach Application for Morphological Change Determinations of Grapes during Drying. Processes 2024, 12, 720. https://doi.org/10.3390/pr12040720
Senadeera W, Banks J, Adiletta G, Brewer K. Microstructural Approach Application for Morphological Change Determinations of Grapes during Drying. Processes. 2024; 12(4):720. https://doi.org/10.3390/pr12040720
Chicago/Turabian StyleSenadeera, Wijitha, Jasmine Banks, Giuseppina Adiletta, and Kate Brewer. 2024. "Microstructural Approach Application for Morphological Change Determinations of Grapes during Drying" Processes 12, no. 4: 720. https://doi.org/10.3390/pr12040720
APA StyleSenadeera, W., Banks, J., Adiletta, G., & Brewer, K. (2024). Microstructural Approach Application for Morphological Change Determinations of Grapes during Drying. Processes, 12(4), 720. https://doi.org/10.3390/pr12040720