Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. The nZVI Preparation
2.3. Encapsulation of Nzvi Particles
2.4. Characterization of the nZVI/(ABS + EC)
- SEM:
- BET:
- Batch experiment:
- (1)
- The initial pH of the system
- (2)
- The initial -N concentration
- (3)
- The reductant concentration
3. Results and Discussion
3.1. nZVI and Matrix Modification Mechanism
3.2. Morphology Observation
3.3. BET Test
3.4. Effects of EC Dosage
3.5. Effects of nZVI Dosage
3.6. Effects of pH
3.7. Effects of Initial Nitrate Concentration
3.8. Effects of Reductant Concentration
3.9. The Denitrification Mechanism of nZVI/(ABS + EC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bahrami, F.; Yu, X.; Zou, Y.; Sun, Y.; Sun, G. Impregnated calcium-alginate beads as floating reactors for the remediation of nitrate-contaminated groundwater. Chem. Eng. J. 2020, 382, 122774. [Google Scholar] [CrossRef]
- Wakida, F.T.; Lerner, D.N. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Hamad, J.R.J.; Yaacob, W.Z.; Omran, A. Quality Assessment of Groundwater Resources in the City of Al-Marj, Libya. Processes 2021, 9, 154. [Google Scholar] [CrossRef]
- Suthar, S.; Bishnoi, P.; Singh, S.; Mutiyar, P.K.; Nema, A.K.; Patil, N.S. Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J. Hazard. Mater. 2009, 171, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, H.; Chiu, P. Nitrate reduction by metallic iron. Water Res. 1998, 32, 2257–2264. [Google Scholar] [CrossRef]
- Ruhl, A.S.; Jekel, M. Impacts of Fe(0) grain sizes and grain size distributions in permeable reactive barriers. Chem. Eng. J. 2012, 213, 245–250. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Zarime, N.A.; Solemon, B.; Wan Yaacob, W.Z.; Jamil, H.; Che Omar, R.; Rafek, A.G.; Roslan, R. Adsorption of Methylene Blue by Bentonite Supported Nano Zero Valent Iron (B-nZVI). Processes 2023, 11, 788. [Google Scholar] [CrossRef]
- Yang, G.C.C.; Lee, H. Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 2005, 39, 884–894. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Fawzy, M.; Eltaweil, A.S.; El-Khouly, M.E. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega 2021, 6, 25397–25411. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liu, L.; Zhang, S.; Xu, J. Evaluation of electrokinetics coupled with a reactive barrier of activated carbon loaded with a nanoscale zero-valent iron for selenite removal from contaminated soils. J. Hazard. Mater. 2019, 368, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, I.; Eljamal, O.; Khalil, A.M.E.; Sugihara, Y.; Matsunaga, N. Phosphate Removal Through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling. Transp. Porous Med. 2018, 125, 395–412. [Google Scholar] [CrossRef]
- Tosco, T.; Petrangeli Papini, M.; Cruz Viggi, C.; Sethi, R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Shao, Y.; Gao, Y.; Yue, Q.; Kong, W.; Gao, B.; Wang, W.; Jiang, W. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron. Chem. Eng. J. 2020, 379, 122384. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; El-Tawil, A.M.; Abd El-Monaem, E.M.; El-Subruiti, G.M. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS Omega 2021, 6, 6348–6360. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Torres, C.A.; Araujo-Martínez, R.F.; Martínez-Castañón, G.A.; Morales-Sánchez, J.E.; Guajardo-Pacheco, J.M.; González-Hernández, J.; Lee, T.; Shin, H.; Hwang, Y.; Ruiz, F. Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chem. Eng. J. 2018, 336, 112–122. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Zheng, K.; Cai, D.; Wu, Z. Reduction of Cr (VI) by urea-dispersed nanoscale zero-valent iron. J. Nanosci. Nanotechnol. 2015, 15, 6103–6107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, G.; Wang, M.; Zheng, K.; Cai, D.; Wu, Z. Reduction of aqueous Cr VI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation. Nanoscale 2013, 5, 9917–9923. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; O’Carroll, D.M.; Elliott, D.W.; Xiong, Z.; Tratnyek, P.G.; Johnson, R.L.; Garcia, A.N. Selectivity of nano zerovalent iron in in situ chemical reduction: Challenges and improvements. Remediat. J. 2016, 26, 27–40. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Song, Y.; Sarmah, A.; Li, X.; Tack, F.M. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J. Control. Release 2018, 283, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Matlochová, A.; Plachá, D.; Rapantová, N. The application of nanoscale materials in groundwater remediation. Pol. J. Environ. Stud. 2013, 22, 1401–1410. [Google Scholar]
- Karimi, B.; Samadi, S. Nitrate removal from aqueous solution: Using zero-valent iron (Fe degrees) fixed on Ca-alginate bead. Desalin. Water Treat. 2019, 143, 235–239. [Google Scholar] [CrossRef]
- Krajangpan, S.; Bermudez, J.J.E.; Bezbaruah, A.N.; Chisholm, B.J.; Khan, E. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Water Sci. Technol. 2008, 58, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lv, L.; Zhang, W.; Du, Q.; Pan, B.; Yang, L.; Zhang, Q. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups. Water Res. 2011, 45, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, B.; Ma, J.; Ning, P. Chitosan Modifying Nanoscale Zero Valent Iron for Tetracycline Removal from Aqueous Solutions: Proposed Pathway. Environ. Eng. Sci. 2019, 36, 273–282. [Google Scholar] [CrossRef]
- Choi, H.; Al-Abed, S.R.; Agarwal, S. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl. Environ. Sci. Technol. 2009, 43, 4137–4142. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yi, D.; Ma, J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole. Appl. Surf. Sci. 2016, 390, 50–59. [Google Scholar] [CrossRef]
- Su, C.; Puls, R.W.; Krug, T.A.; Watling, M.T.; O’Hara, S.K.; Quinn, J.W.; Ruiz, N.E. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res. 2012, 46, 5071–5084. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Trucillo, P.; De Negri Atanasio, G.; Bufalini, C.; Campardelli, R.; Perego, P.; Palombo, D.; Reverchon, E. Operating Parameters Optimization for the Production of Liposomes Loaded with Antibodies Using a Supercritical Fluid-Assisted Process. Processes 2023, 11, 663. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharmaceut. 2010, 385, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Chi, D.; Yu, J.; Li, H. Encapsulated ecdysone by internal gelation of alginate microspheres for controlling its release and photostability. Chem. Eng. J. 2011, 168, 94–101. [Google Scholar] [CrossRef]
- Gonzalez Gomez, A.; Syed, S.; Marshall, K.; Hosseinidoust, Z. Liposomal Nanovesicles for Efficient Encapsulation of Staphylococcal Antibiotics. ACS Omega 2019, 4, 10866–10876. [Google Scholar] [CrossRef]
- Kavetsou, E.; Koutsoukos, S.; Daferera, D.; Polissiou, M.G.; Karagiannis, D.; Perdikis, D.; Detsi, A. Encapsulation of Mentha pulegium essential oil in yeast cell microcarriers: An approach to environmentally friendly pesticides. J. Agric. Food Chem. 2019, 67, 4746–4753. [Google Scholar] [CrossRef]
- Lin, G.; Chen, X.; Zhou, H.; Zhou, X.; Xu, H.; Chen, H. Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting pH sensitivity for sustained pesticide release. J. Appl. Polym. Sci. 2019, 136, 47160. [Google Scholar] [CrossRef]
- Slattery, M.; Harper, B.; Harper, S. Pesticide Encapsulation at the Nanoscale Drives Changes to the Hydrophobic Partitioning and Toxicity of an Active Ingredient. Nanomaterials 2019, 9, 81. [Google Scholar] [CrossRef]
- Maes, C.; Menot, B.; Hayouni, S.; Martinez, A.; Fauconnier, M.; Bouquillon, S. Preparation of New Glycerol-Based Dendrimers and Studies on Their Behavior toward Essential Oil Encapsulation. ACS Omega 2022, 7, 10277–10291. [Google Scholar] [CrossRef] [PubMed]
- Fugolin, A.P.P.; Ferracane, J.L.; Pfeifer, C.S. Fatigue-Crack Propagation Behavior in Microcapsule-Containing Self-Healing Polymeric Networks. Mater. Des. 2022, 223, 111142. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Augustin, M.A.; Hemar, Y. Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 2009, 38, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; Sara, M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, S.; Liu, H.; Xu, X.; Ma, H. Microencapsulation of oxalic acid (OA) via coacervation induced by polydimethylsiloxane (PDMS) for the sustained release performance. Mater. Des. 2017, 116, 31–41. [Google Scholar] [CrossRef]
- Meng, F.; Li, M.; Wang, S.; Liu, X.; Gao, W.; Ma, Z.; Kong, C.; Ma, X.; Li, J. Encapsulation of potassium persulfate with ABS via coacervation for delaying the viscosity loss of fracturing fluid. J. Appl. Polym. Sci. 2019, 136, 47734. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Z.; Xie, C.; Lv, X.; Yang, Y.; Xu, X. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination 2012, 284, 9–13. [Google Scholar] [CrossRef]
- Wang, W.; Jin, Z.; Li, T.; Zhang, H.; Gao, S. Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 2006, 65, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hao, Z.; Zhang, Z.; Yang, Y.; Xu, X. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Saf. Environ. 2010, 88, 439–445. [Google Scholar] [CrossRef]
- Suzuki, T.; Moribe, M.; Oyama, Y.; Niinae, M. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chem. Eng. J. 2012, 183, 271–277. [Google Scholar] [CrossRef]
- Noubactep, C. Comments on ‘Mechanism study of nitrate reduction by nano zero valent iron’ by Hwang et al. [J. Hazard. Mater. (2010). https://doi.org/10.1016/j.jhazmat.2010.10.078]. J. Hazard. Mater. 2011, 186, 946–947. [Google Scholar] [CrossRef] [PubMed]
Sample No. | m (ABS) | m (EC) | m (nZVI) | Nomenclature |
---|---|---|---|---|
1 | 0.25 | 0.15 | 0.15 | nZVI/(ABS + EC) - (0.6–0.6) |
2 | 0.25 | 0.15 | 0.20 | nZVI/(ABS + EC) - (0.6–0.8) |
3 | 0.25 | 0.15 | 0.25 | nZVI/(ABS + EC) - (0.6–1.0) |
4 | 0.25 | 0.15 | 0.50 | nZVI/(ABS + EC) - (0.6–2.0) |
5 | 0.25 | 0.00 | 0.25 | nZVI/ABS |
6 | 0.25 | 0.02 | 0.25 | nZVI/(ABS + EC) - (0.08–1.0) |
7 | 0.25 | 0.05 | 0.25 | nZVI/(ABS + EC) - (0.2–1.0) |
8 | 0.25 | 0.10 | 0.25 | nZVI/(ABS + EC) - (0.4–1.0) |
9 | 0.25 | 0.20 | 0.25 | nZVI/(ABS + EC) - (0.8–1.0) |
10 | 0.25 | 0 | 0 | ABS |
Sample | dEC | kobs/min−1 | R2 |
---|---|---|---|
nZVI/(ABS + EC) - (0.08–1.0) | 0.02 | 0.0423 | 0.9500 |
nZVI/(ABS + EC) - (0.2–1.0) | 0.05 | 0.0507 | 0.9304 |
nZVI/(ABS + EC) - (0.4–1.0) | 0.10 | 0.0659 | 0.9385 |
nZVI/(ABS + EC) - (0.6–1.0) | 0.15 | 0.0763 | 0.8805 |
nZVI/(ABS + EC) - (0.8–1.0) | 0.20 | 0.0820 | 0.8695 |
Sample | dFe | kobs/min−1 | R2 |
---|---|---|---|
nZVI/(ABS + EC) - (0.6–0.6) | 0.15 | 0.0901 | 0.9895 |
nZVI/(ABS + EC) - (0.6–0.8) | 0.20 | 0.1022 | 0.9939 |
nZVI/(ABS + EC) - (0.6–1.0) | 0.25 | 0.1323 | 0.9914 |
nZVI/(ABS + EC) - (0.6–2.0) | 0.50 | 0.2036 | 0.9902 |
No. | Initial Nitrate Concentration/(mg/L) | kobs | R2 |
---|---|---|---|
1 | 15 | 0.1844 | 0.9296 |
2 | 25 | 0.0807 | 0.9938 |
3 | 50 | 0.0809 | 0.9963 |
4 | 75 | 0.0623 | 0.9759 |
5 | 100 | 0.0509 | 0.9960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Yang, Y.; Li, M.; Zhu, Q.; Qin, B.; Yang, C. Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation. Processes 2024, 12, 697. https://doi.org/10.3390/pr12040697
Meng F, Yang Y, Li M, Zhu Q, Qin B, Yang C. Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation. Processes. 2024; 12(4):697. https://doi.org/10.3390/pr12040697
Chicago/Turabian StyleMeng, Fanbin, Yuning Yang, Miao Li, Qizhi Zhu, Bing Qin, and Chunpeng Yang. 2024. "Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation" Processes 12, no. 4: 697. https://doi.org/10.3390/pr12040697
APA StyleMeng, F., Yang, Y., Li, M., Zhu, Q., Qin, B., & Yang, C. (2024). Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation. Processes, 12(4), 697. https://doi.org/10.3390/pr12040697