Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Pressurized Liquid Extraction (PLE)
2.4. Microwave-Assisted Extraction (MAE)
2.5. Ultrasound-Assisted Extraction (UAE)
2.6. Total Phenolic Content (TPC)
2.7. Antioxidant Activity
2.7.1. FRAP-Ferric Reducing Antioxidant Power Assay
2.7.2. DPPH Radical Scavenging Assay
2.8. Determination of Ascorbic Acid Content
2.9. Polyphenolic Characterization of the Extracts by UPLC-MS2
2.10. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Influence of Temperature on the Total Phenolic Content of Carob Leaf Extracts
3.2. Influence of Time on the Total Phenolic Content of Carob Leaf Extracts
3.3. Individual Polyphenolic Content of the Carob Leaf Extracts
3.4. Antioxidant Activity of the Carob Leaf Extracts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El Hajaji, H.; Lachkar, N.; Alaoui, K.; Cherrah, Y.; Farah, A.; Ennabili, A.; El Bali, B.; Lachkar, M. Antioxidant Properties and Total Phenolic Content of Three Varieties of Carob Tree Leaves from Morocco. Rec. Nat. Prod. 2010, 4, 193–204. [Google Scholar]
- Amine, E.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laarej, S.; et al. Exploring the Multi-Faceted Potential of Carob Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Dahmani, W.; Elaouni, N.; Abousalim, A.; Akissi, Z.L.E.; Legssyer, A.; Ziyyat, A.; Sahpaz, S. Exploring Carob (Ceratonia siliqua L.): A Comprehensive Assessment of Its Characteristics, Ethnomedicinal Uses, Phytochemical Aspects, and Pharmacological Activities. Plants 2023, 12, 3303. [Google Scholar] [CrossRef]
- Nechchadi, H.; Benhssaine, K.; Boulbaroud, S.; Berrougui, H.; Ramchoun, M. Factors of Variation and the Techniques for Improving Extraction and Bioaccessibility of Carob Polyphenol: A Review. J. Food Meas. Charact. 2023, 17, 4775–4799. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Eto, B.; El-benna, J.; Sebai, H.; Marzouki, L. Chemical Constituents and Pharmacological Actions of Carob Pods and Leaves (Ceratonia siliqua L.) on the Gastrointestinal Tract: A Review. Biomed. Pharmacother. 2017, 93, 522–528. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in Carobs: A Review on Their Composition, Antioxidant Capacity and Cytotoxic Effects, and Health Impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef]
- Brahim, E.B. Total Polyphenols and Gallic Acid Contents in Domesticated Carob (Ceratonia siliqua L.) Pods and Leaves. Int. J. Pure Appl. Biosci. 2017, 5, 22–30. [Google Scholar] [CrossRef]
- Singh, S.V.; Manhas, A.; Singh, S.P.; Mishra, S.; Tiwari, N.; Kumar, P.; Shanker, K.; Srivastava, K.; Sashidhara, K.V.; Pal, A. A Phenolic Glycoside from Flacourtia Indica Induces Heme Mediated Oxidative Stress in Plasmodium Falciparum and Attenuates Malaria Pathogenesis in Mice. Phytomedicine 2017, 30, 1–9. [Google Scholar] [CrossRef]
- Aissani, N.; Coroneo, V.; Fattouch, S.; Caboni, P. Inhibitory Effect of Carob (Ceratonia siliqua) Leaves Methanolic Extract on Listeria monocytogenes. J. Agric. Food Chem. 2012, 60, 9954–9958. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimization of Ultrasound-Assisted Extraction of Polyphenols from Wheatgrass (Triticum aestivum L.). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Arya, P.; Kumar, P. Comparison of Ultrasound and Microwave Assisted Extraction of Diosgenin from Trigonella Foenum Graceum Seed. Ultrason. Sonochem. 2021, 74, 105572. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Rocchetti, G.; Lorenzo, J.M. Determination of Polyphenols Using Liquid Chromatography–Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Shortle, E.; O’Grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of Extraction Technique on the Anti-Oxidative Potential of Hawthorn (Crataegus monogyna) Extracts in Bovine Muscle Homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef] [PubMed]
- Voća, S.; Dobričević, N.; Skendrović Babojelić, M.; Družić, J.; Duralija, B.; Levačić, J. Differences in Fruit Quality of Strawberry Cv. Elsanta Depending on Cultivation System and Harvest Time. Agric. Conspec. Sci. 2007, 72, 285–288. [Google Scholar]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative Effects of Ceratonia siliqua L. on Mouse Hepatocellular Carcinoma Cell Line. Fitoterapia 2002, 73, 674–684. [Google Scholar] [CrossRef]
- Meziani, S.; Oomah, B.D.; Zaidi, F.; Simon-Levert, A.; Bertrand, C.; Zaidi-Yahiaoui, R. Antibacterial Activity of Carob (Ceratonia siliqua L.) Extracts against Phytopathogenic Bacteria Pectobacterium Atrosepticum. Microb. Pathog. 2015, 78, 95–102. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Trigui, M.; Mezghani Jarraya, R.; Damak, M.; Jaoua, S. Identification of Phenolic Compounds by High Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS) and in Vitro Evaluation of the Antioxidant and Antimicrobial Activities of Ceratonia siliqua Leaves Extracts. J. Med. Plant Res. 2015, 9, 479–485. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, N.; Prasad, R. Anhydrous Ethanol: A Renewable Source of Energy. Renew Sust. Energy Rev. 2010, 14, 1830–1844. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Luthria, D.L. Optimization of Extraction of Phenolic Acids from a Vegetable Waste Product Using a Pressurized Liquid Extractor. J. Funct. Foods 2012, 4, 842–850. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çinar, F.; Kovačević, D.B.; Žutić, I.; Dragović-Uzelac, V. Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments Fromwild Nettle Leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Čulina, P.; Repajić, M.; Elez Garofulić, I.; Dragović-Uzelac, V.; Pedisić, S. Evaluation of Polyphenolic Profile and Antioxidant Activity of Sea Buckthorn (Elaeagnus Rhamnoides (L.) A. Nelson) Leaf and Berry Extracts Obtained via Optimized Microwave-Assisted and Accelerated Solvent Extraction. Processes 2024, 12, 126. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Repajić, M.; Garofulić, I.E.; Tuđen, L.; Dragović-Uzelac, V.; Levaj, B. Comparison of Different Extraction Methods for the Recovery of Olive Leaves Polyphenols. Processes 2020, 8, 1008. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Penić, M.; Fegeš, M.; Dragović-Uzelac, V. Microwave-Assisted Extraction (MAE) of Dalmatian Sage Leaves for the Optimal Yield of Polyphenols: HPLC-DAD Identification and Quantification. Food Anal. Methods 2016, 9, 2385–2394. [Google Scholar] [CrossRef]
- Santos, F.F.P.; Rodrigues, S.; Fernandes, F.A.N. Optimization of the Production of Biodiesel from Soybean Oil by Ultrasound Assisted Methanolysis. Fuel Process Technol. 2009, 90, 312–316. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Box-Behnken Experimental Design for a Green Extraction Method of Phenolic Compounds from Olive Leaves. Ind. Crops Prod. 2020, 154, 112741. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of Oleuropein and Luteolin-7-O-Glucoside from Olive Leaves: Optimization of Technique and Operating Conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Optimisation of Accelerated Solvent Extraction of Antioxidant Compounds from Rosemary (Rosmarinus Officinalis L.), Marjoram (Origanum Majorana L.) and Oregano (Origanum Vulgare L.) Using Response Surface Methodology. Food Chem. 2011, 126, 339–346. [Google Scholar] [CrossRef]
- Silva, E.; Rogez, H.; Larondelle, Y. Optimization of Extraction of Phenolics from Inga Edulis Leaves Using Response Surface Methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Sarakatsianos, I.; Adamopoulos, K.; Samanidou, V.; Goula, A.; Ninou, E. Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Medicinal and Aromatic Plants: Sideritis raeseri, Sideritis scardica and Origanum vulgare. Curr. Anal. Chem. 2020, 16, 106–111. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Lucchessi, M.-E.; Abdelly, C.; Magné, C. Ultrasound-Assisted Extraction: Effect of Extraction Time and Solvent Power on the Levels of Polyphenols and Antioxidant Activity of Mesembryanthemum edule L. Aizoaceae Shoots. Trop. J. Pharm. Res. 2012, 11, 243–249. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.; Mavromoustakos, T.; Tzakos, A. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Vaya, J.; Mahmood, S. Flavonoid Content in Leaf Extracts of the Fig (Ficus carica L.), Carob (Ceratonia siliqua L.) and Pistachio (Pistacia lentiscus L.). BioFactors 2006, 28, 169–175. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Makris, D.P.; Kefalas, P. Carob Pods (Ceratonia siliqua L.) as a Source of Polyphenolic Antioxidants. Food Technol. Biotechnol. 2004, 42, 105–108. [Google Scholar]
- Lv, J.-M.; Gouda, M.; Zhu, Y.-Y.; Ye, X.-Q.; Chen, J.-C. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi (Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- El-Hamidi, M.; Zaher, F.A. Comparison Between Some Common Clays as Adsorbents of Carotenoids, Chlorophyll and Phenolic Compounds from Vegetable Oils. Am. J. Food Technol. 2016, 11, 92–99. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. In Vitro Antioxidant and Inhibitory Activity of Water Decoctions of Carob Tree (Ceratonia siliqua L.) on Cholinesterases, α-Amylase and α-Glucosidase. Nat. Prod. Res. 2015, 29, 2155–2159. [Google Scholar] [CrossRef]
- Milić, A.; Daničić, T.; Tepić Horecki, A.; Šumić, Z.; Teslić, N.; Bursać Kovačević, D.; Putnik, P.; Pavlić, B. Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022, 11, 325. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Christaki, S.; Biliaderis, C.G.; Chatzopoulou, P. Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity. Molecules 2023, 28, 6669. [Google Scholar] [CrossRef] [PubMed]
- Gerhäuser, C. Phenolic Beer Compounds to Prevent Cancer. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2008; pp. 669–684. ISBN 9780123738912. [Google Scholar]
- Khelouf, I.; Jabri Karoui, I.; Abderrabba, M. Chemical Composition, in Vitro Antioxidant and Antimicrobial Activities of Carob Pulp (Ceratonia siliqua L.) from Tunisia. Chemical 2023, 77, 6125–6134. [Google Scholar] [CrossRef]
- Carbas, B.; Salinas, M.V.; Serrano, C.; Passarinho, J.A.; Puppo, M.C.; Ricardo, C.P.; Brites, C. Chemical Composition and Antioxidant Activity of Commercial Flours from Ceratonia siliqua and Prosopis spp. J. Food Meas. Charact. 2019, 13, 305–311. [Google Scholar] [CrossRef]
- Martić, N.; Zahorec, J.; Stilinović, N.; Andrejić-Višnjić, B.; Pavlić, B.; Kladar, N.; Šoronja-Simović, D.; Šereš, Z.; Vujčić, M.; Horvat, O.; et al. Hepatoprotective Effect of Carob Pulp Flour (Ceratonia siliqua L.) Extract Obtained by Optimized Microwave-Assisted Extraction. Pharmaceutics 2022, 14, 657. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Folin-Ciocalteu, FRAP, and DPPH• Assays for Measuring Polyphenol Concentration in White Wine. Am. J. Enol. Vitic. 2015, 66, 463–471. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Ouchemoukh, S.; Meziant, N.; Idiri, Y.; Hernanz, D.; Stinco, C.M.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Madani, K.; Luis, J. Bioactive Metabolites Involved in the Antioxidant, Anticancer and Anticalpain Activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. Extracts. Ind. Crops Prod. 2017, 95, 6–17. [Google Scholar] [CrossRef]
- Kontoghiorghes, G.J.; Kolnagou, A.; Kontoghiorghe, C.N.; Mourouzidis, L.; Timoshnikov, V.A.; Polyakov, N.E. Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines 2020, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Kadakal, Ç.; Duman, T.; Ekinci, R. Thermal Degradation Kinetics of Ascorbic Acid, Thiamine and Riboflavin in Rosehip (Rosa canina L.) Nectar. Food Sci. Technol. 2017, 38, 667–673. [Google Scholar] [CrossRef]
- Kaack, K.; Austed, T. Interaction of Vitamin C and Flavonoids in Elderberry (Sambucus nigra L.) during Juice Processing. Plant Foods Hum. Nutr. 1998, 52, 187–198. [Google Scholar] [CrossRef]
- Handa, S.S.; Khanuja, S.P.; Longo, G.; Rakesh, D.D. Extraction Technologies for Medicinal and Aromatic Plants; Earth, Environmental and Marine Sciences and Technologies: Trieste, Italy, 2008. [Google Scholar]
Extraction Technique | Temperature (°C) | Extraction Time (min) | Total Phenols (mg GAE g−1 Leaf) |
---|---|---|---|
PLE | 60 | 5 | 40.81 ± 0.63 |
10 | 34.96 ± 0.70 | ||
15 | 33.72 ± 0.29 | ||
80 | 5 | 44.17 ± 0.22 | |
10 | 44.91 ± 0.31 | ||
15 | 43.72 ± 0.50 | ||
100 | 5 | 42.90 ± 0.49 | |
10 | 37.09 ± 0.52 | ||
15 | 42.94 ± 0.98 | ||
120 | 5 | 46.86 ± 0.42 | |
10 | 53.60 ± 0.18 | ||
15 | 42.34 ± 0.83 | ||
140 | 5 | 62.73 ± 0.28 | |
10 | 53.47 ± 0.13 | ||
15 | 67.73 ± 0.46 | ||
160 | 5 | 68.21 ± 0.31 | |
10 | 68.94 ± 0.54 | ||
15 | 80.73 ± 0.20 | ||
MAE | 30 | 5 | 60.78 ± 0.90 |
10 | 56.81 ± 0.61 | ||
15 | 62.84 ± 0.30 | ||
40 | 5 | 51.25 ± 0.59 | |
10 | 69.20 ± 0.60 | ||
15 | 61.60 ± 0.68 | ||
50 | 5 | 61.74 ± 0.34 | |
10 | 63.18 ± 0.73 | ||
15 | 71.00 ± 0.43 | ||
60 | 5 | 63.27 ± 0.68 | |
10 | 71.58 ± 0.53 | ||
15 | 73.93 ± 0.43 | ||
70 | 5 | 65.50 ± 0.41 | |
10 | 78.80 ± 1.29 | ||
15 | 90.67 ± 0.93 | ||
80 | 5 | 75.88 ± 0.76 | |
10 | 83.02 ± 0.72 | ||
15 | 82.41 ± 1.43 | ||
UAE | 30 | 5 | 31.64 ± 0.22 |
10 | 51.44 ± 0.85 | ||
15 | 42.21 ± 0.57 | ||
40 | 5 | 45.23 ± 0.29 | |
10 | 32.46 ± 0.62 | ||
15 | 46.52 ± 0.59 | ||
50 | 5 | 30.23 ± 0.35 | |
10 | 45.60 ± 0.09 | ||
15 | 42.04 ± 0.24 | ||
60 | 5 | 25.87 ± 0.23 | |
10 | 44.39 ± 0.79 | ||
15 | 53.27 ± 0.95 | ||
70 | 5 | 43.75 ± 1.41 | |
10 | 55.98 ± 0.53 | ||
15 | 55.82 ± 0.48 | ||
80 | 5 | 40.01 ± 0.13 | |
10 | 43.82 ± 0.51 | ||
15 | 51.21 ± 1.23 |
Source of Variation | N | Total Phenols (mg GAE g−1) | |
---|---|---|---|
PLE | Temperature (°C) | p < 0.01 * | |
60 | 12 | 36.50 ± 0.94 a | |
80 | 12 | 44.27 ± 0.18 b | |
100 | 12 | 40.98 ± 0.85 a,b | |
120 | 12 | 47.60 ± 1.40 b | |
140 | 12 | 61.31 ± 1.78 c | |
160 | 12 | 72.63 ± 1.73 d | |
Static time (min) | p = 0.49 | ||
5 | 24 | 50.95 ± 2.20 a | |
10 | 24 | 48.83 ± 2.40 a | |
15 | 24 | 51.87 ± 3.46 a | |
MAE | Temperature (°C) | p < 0.01 * | |
30 | 12 | 60.14 ± 0.77 a | |
40 | 12 | 60.68 ± 2.22 a | |
50 | 12 | 65.31 ± 1.23 a,b | |
60 | 12 | 69.59 ± 1.39 b | |
70 | 12 | 78.32 ± 3.11 c | |
80 | 12 | 80.43 ± 1.01 c | |
Time (min) | p < 0.01 * | ||
5 | 24 | 63.07 ± 1.52 a | |
10 | 24 | 70.43 ± 1.85 b | |
15 | 24 | 73.74 ± 2.15 b | |
UAE | Temperature (°C) | p < 0.01 * | |
30 | 12 | 41.76 ± 2.44 a | |
40 | 12 | 41.40 ± 1.92 a | |
50 | 12 | 39.29 ± 1.98 a | |
60 | 12 | 41.18 ± 3.44 a | |
70 | 12 | 51.85 ± 1.74 b | |
80 | 12 | 45.01 ± 1.42 a | |
Time (min) | p < 0.01 * | ||
5 | 24 | 36.12 ± 1.52 a | |
10 | 24 | 45.61 ± 1.52 b | |
15 | 24 | 48.51 ± 1.11 b |
Compound Number | Retention Time | Tentative Identification | Concentration (mg g−1 Carob Leaf) | ||
---|---|---|---|---|---|
PLE | MAE | UAE | |||
Flavonols | |||||
1 | 1.37 | Myricetin * | 9.57 ± 0.15 b | 9.55 ± 0.19 b | 8.66 ± 0.18 a |
15 | 7.692 | Rutin * | 0.10 ± 0.00 c | 0.06 ± 0.00 a | 0.09 ± 0.00 b |
17 | 7.969 | Quercetin glucoside | 0.76 ± 0.02 a | 0.74 ± 0.02 a | 0.90 ± 0.02 b |
19 | 8.48 | Kaempferol rutinoside | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.01 ± 0.00 c |
20 | 8.51 | Kaempferol-O-hexoside | 0.18 ± 0.00 c | 0.17 ± 0.00 b | 0.16 ± 0.00 a |
21 | 8.52 | Quercetin pentoside | 0.49 ± 0.01 b | 0.50 ± 0.01 b | 0.44 ± 0.01 a |
22 | 8.877 | Isorhamnetin hexoside | 0.29 ± 0.01 a | 0.32 ± 0.01 b | 0.32 ± 0.01 b |
23 | 8.897 | Quercetin rhamnoside | 5.96 ± 0.12 b | 6.17 ± 0.13 b | 5.73 ± 0.12 a |
24 | 9.178 | Kaempferol-O-pentoside | 0.03 ± 0.00 a | 0.06 ± 0.00 b | 0.03 ± 0.00 a |
Total flavonols | 17.39 ± 0.35 b | 17.58 ± 0.36 b | 16.33 ± 0.33 a | ||
Phenolic acids | |||||
2 | 1.679 | Gallic acid * | 9.09 ± 0.19 b | 8.78 ± 0.18 b | 6.61 ± 0.13 a |
3 | 2.313 | 3.4-Dihidrobenzoic acid hexoside | 0.01 ± 0.00 b | 0.01 ± 0.00 c | 0.00 ± 0.00 a |
4 | 3.488 | Syringic acid * | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.06 ± 0.00 b |
5 | 3.508 | Protocatehuic acid * | 0.08 ± 0.00 a | 0.08 ± 0.00 a | 0.07 ± 0.00 a |
6 | 4.259 | Rosmarinic acid * | 0.01 ± 0.00 a | 0.02 ± 0.00 c | 0.01 ± 0.00 b |
7 | 4.813 | p-hydroxybenzoic acid | 0.44 ± 0.01 a | 0.41 ± 0.01 a | 0.42 ± 0.01 a |
8 | 5.043 | Chlorogenic acid * | 0.04 ± 0.00 c | 0.01 ± 0.00 a | 0.03 ± 0.00 b |
9 | 5.711 | Caffeic acid * | 0.76 ± 0.02 c | 0.03 ± 0.00 b | 0.02 ± 0.00 a |
14 | 7.28 | p-coumaric acid * | 0.28 ± 0.01 b | 0.40 ± 0.01 c | 0.23 ± 0.00 a |
16 | 7.787 | Ferulic acid * | 0.01 ± 0.00 a | 0.03 ± 0.00 c | 0.02 ± 0.00 b |
Total phenolic acids | 10.75 ± 0.22 c | 9.8114 ± 0.2003 b | 7.4583 ± 0.1522 a | ||
Flavones | |||||
18 | 8.29 | Apigenin * | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.05 ± 0.00 a |
25 | 9.849 | Luteolin * | 0.08 ± 0.00 a | 0.08 ± 0.00 b | 0.09 ± 0.00 b |
Total flavones | 0.13 ± 0.00 a | 0.13 ± 0.00 a | 0.14 ± 0.00 b | ||
Flavan-3-ols | |||||
10 | 5.93 | Catechin * | 0.03 ± 0.00 a | 0.05 ± 0.00 c | 0.04 ± 0.00 b |
11 | 5.937 | Epicatechin | 0.04 ± 0.00 a | 0.07 ± 0.00 b | 0.04 ± 0.00 a |
12 | 6.02 | Epigallocatechin gallate * | 1.39 ± 0.03 b | 1.25 ± 0.03 b | 0.96 ± 0.02 a |
26 | 12.159 | Epicatechin gallate * | 0.46 ± 0.01 b | 0.37 ± 0.01 a | 0.36 ± 0.01 a |
Total flavan-3-ols | 1.93 ± 0.04 c | 1.73 ± 0.04 b | 1.39 ± 0.03 a | ||
Proanthocyanidins | |||||
13 | 6.249 | Procyandinin trimer type B | 0.01 ± 0.00 b | 0.01 ± 0.00 a | 0.11 ± 0.00 c |
Total polyphenols | 30.20 ± 0.62 b | 29.25 ± 0.60 b | 25.43 ± 0.52 a | ||
Ascorbic acid (mg/mL) | 0.03 ± 0.00 a | 0.44 ± 0.02 b | 0.52 ± 0.02 c |
Group of Compounds | Pearson for DPPH | Pearson for FRAP |
---|---|---|
Flavonols | 0.41 | −0.87 * |
Phenolic acids | 0.00 | −1.00 * |
Flavones | 0.54 | 0.89 * |
Flavan-3-ols | −0.08 | −1.00 * |
Proanthocyanidins | −0.30 | 0.92 * |
Gallic acid | 0.17 | −0.97 * |
Myricetin | 0.70 * | −0.64 * |
Quercetin-3-rhamnoside | 0.26 | −0.93 * |
Total phenols UPLC-MS2 | 0.09 | −0.98 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegledi, E.; Dobroslavić, E.; Zorić, Z.; Repajić, M.; Elez Garofulić, I. Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques. Processes 2024, 12, 658. https://doi.org/10.3390/pr12040658
Cegledi E, Dobroslavić E, Zorić Z, Repajić M, Elez Garofulić I. Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques. Processes. 2024; 12(4):658. https://doi.org/10.3390/pr12040658
Chicago/Turabian StyleCegledi, Ena, Erika Dobroslavić, Zoran Zorić, Maja Repajić, and Ivona Elez Garofulić. 2024. "Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques" Processes 12, no. 4: 658. https://doi.org/10.3390/pr12040658