Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Samples
2.3. Physicochemical Analysis of CBS
2.3.1. Moisture Content
2.3.2. pH
2.3.3. Color
2.4. Microscopic Granulation Study of CBS Powders
2.5. Bioactive Compounds of CBS Powders
2.5.1. Total Phenolic Content (TPC)
2.5.2. Antioxidant Activity
2.6. Preparation of Hot Water CBS Infusions
Characterization of the CBS Infusions
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization and Antioxidant Capacity of CBS Powders
3.1.1. Moisture Content
3.1.2. Granulometric Analysis
3.1.3. Color of CBS Powder and Infusions
3.1.4. pH of CBS Powder and Infusions
3.1.5. Total Phenolic Content (TPC) of CBS Powders
3.1.6. Antioxidant Activity of CBS Powders
3.2. Total Phenolic Content and Antioxidant Activity of CBS Infusions
3.2.1. Total Phenolic Content of CBS Infusions
3.2.2. Antioxidant Activity of CBS Infusions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Trade Center. Trade Statistics for International Business Development. Monthly, Quarterly and Import & Export Values, Volumes, Growth Rates, Market Shares, etc. 2019. Available online: https://intracen.org/es (accessed on 8 July 2024).
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa bean shell: A by-product with high potential for nutritional and biotechnological applications. Antioxidants 2023, 12, 1028. [Google Scholar] [CrossRef] [PubMed]
- Nair Prabhakaran, K.P. The Agronomy and Economy of Important Tree Crops of the Developing World, 1st ed.; Elsevier Inc.: Burlintong, MA, USA, 2010; pp. 131–180. [Google Scholar]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Analytical dataset of Ecuadorian cocoa shells and beans. Data Brief 2019, 22, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wiyono, T.; Nurhayati, R.; Herawati, E.R.N.; Laila, U. The effect of time, pH and solvent composition on cocoa shell polyphenol extraction and its antioxidant activity: Response surface method approach. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012029. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa shell and its compounds: Applications in the food industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Buitrago-Lopez, A.; Sanderson, J.; Johnson, L.; Warnakula, S.; Wood, A.; Di Angelantonio, E. Chocolate consumption and cardiometabolic disorders: Systematic review and meta-analysis. BMJ 2011, 343, d4488. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Jin, Y.; Lu, J. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 2017, 9, 688. [Google Scholar] [CrossRef]
- Larsson, S.C.; Åkesson, A.; Gigante, B.; Wolk, A. Chocolate consumption and risk of myocardial infarction: A prospective study and meta-analysis. Heart 2016, 102, 1017–1022. [Google Scholar] [CrossRef]
- Vásquez, Z.S.; de Carvalho Neto, D.P.; Pereira, G.V.; Vandenberghe, L.P.; de Oliveira, P.Z.; Tiburcio, P.B.; Rogez, L.G.H.; Góes, N.A.; Soccol, C.R. Biotechnological approaches for cocoa waste management: A review. Waste Manag. 2019, 90, 72–83. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J.; Bangoura, M.L.; Lagnika, C. Quantification of total polyphenolic content and antimicrobial activity of cocoa Theobroma cacao L. bean shells. Pak. J. Nutr. 2012, 11, 574–579. [Google Scholar] [CrossRef]
- De Barros, H.E.A.; Natarelli, C.V.L.; de Carvalho Tavares, I.M.; de Oliveira, A.L.M.; Araújo, A.B.S.; Pereira Carvalho, N.E.E.; de Vilas Boas, B.E.V.; Franco, M. Nutritional clustering of cookies developed with cocoa shell, soy, and green banana flours using exploratory methods. Food Bioprocess Technol. 2020, 13, 1566–1578. [Google Scholar] [CrossRef]
- Barišić, V.; Stokanović, M.C.; Flanjak, I.; Doko, K.; Jozinović, A.; Babić, J.; Ačkar, Đ. Cocoa Shell as a Step Forward to Functional Chocolates—Bioactive Components in Chocolates with Different Composition. Molecules 2020, 25, 5470. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.N.S.; Vieira, S.R.; Campidelli, M.L.L.; Rocha, R.A.R.; Rodrigues, L.M.A.; Santos, P.H.; Carneiro, S.J.D.; Taveres, C.I.M.; de Oliveira, C.P. Impact of using cocoa bean shell powder as a substitute for wheat flour on some of chocolate cake properties. Food Chem. 2022, 381, 132215. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, H.; Krishania, M.; Bains, K.; Kaur, A. Hot water infusion technique to prepare antioxidant-rich beverage with pomegranate peel: Formulation, nutritional study, and cost analysis. Food Chem. Adv. 2024, 4, 2100601. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Romero-López, S. Efecto del Tamaño de Partícula Sobre la Composición Química, las Propiedades Fisicoquímicas y Tecnofuncionales de la Cáscara del Grano de Cacao (Theobroma cacao L). Bachelor’s Thesis, de los Alimentos Universidad Miguel Hernández de Elche/Escuela Politécnica Superior de Orihuela, Alicante, Spain, 2021. [Google Scholar]
- NMX-F-428-1982; Alimentos. Determinación de Humedad (Método Rápido de la Termobalanza). Foods. Determination of Moisture (Thermobalanza). Foods. Determination of Moisture (Thermobalance Rapid Method). Normas Mexicanas. Dirección General de Normas: Mexico City, Mexico, 1982.
- Botella-Martínez, C.; Lucas-Gonzalez, R.; Ballester-Costa, C.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Delgado-Ospina, J.; Chaves-López, C.; Viuda-Martos, M. Ghanaian cocoa (Theobroma cacao L.) bean shells coproducts: Effect of particle size on chemical composition, bioactive compound content and antioxidant activity. Agronomy 2021, 11, 401. [Google Scholar] [CrossRef]
- Joaquín-Cruz, E.; Dueñas, M.; García-Cruz, L.; Salinas-Moreno, Y.; Santos-Buelga, C.; García-Salinas, C. Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Res. Int. 2015, 70, 151–157. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Probst, K.V.; Ambrose, R.P.K.; Pinto, R.L.; Bali, R.; Krishnakumar, P.; Ileleji, K.E. The effect of moisture content on the grinding performance of corn and corncobs by hammermilling. Trans. ASABE 2013, 56, 1025–1033. [Google Scholar]
- Burgos Briones, G.; Ulbio, A.C.; Andrés, S.M.; Alex, Z.A. Evaluación Técnica del Enriquecimiento de Harina de Trigo con Cascarilla de Cacao (Theobroma cacao). Revista Colón Ciencias, Tecnología y Negocios. Universidad de Panamá, Panamá. 2020; Volume 7. Available online: https://www.researchgate.net/publication/350322915_EVALUACION_TECNICA_DEL_ENRIQUECIMIENTO_DE_HARINA_DE_TRIGO_CON_CASCARILLA_DE_CACAO_Theobroma_cacao (accessed on 20 October 2024).
- Lares, M.; Pérez, E.; Álvarez, C. Cambios de las propiedades fisicoquímicas y perfil de ácidos grasos en cacao de Chuao, durante el beneficio. Agron. Trop. 2018, 63, 37–47. [Google Scholar]
- Soto, M.J. Desarrollo del Proceso de Producción de Cascarilla de Semilla de Cacao en Polvo Destinado el Consumo Humano. Bachelor’s Thesis, Universidad Simón Bolívar, Barranquilla, Colombia, 2012. Available online: https://www.researchgate.net/publication/360245644_Desarrollo_de_un_proceso_tecnologico_para_la_obtencion_de_briquetas_de_aserrin_de_madera_y_cascarilla_de_arroz_y_pruebas_de_produccion_de_gas_pobre (accessed on 20 October 2024).
- Garay-Vega, R.R.; Vela-Alvarado, J.W.; Quiñones-Ruiz, C.E. Influencia de la temperatura de tostado en la capacidad antioxidante de la cascarilla de cacao (Theobroma cacao L.) clon CCN-51 aprovechado para elaborar filtrante. Investig. Univ. UNU 2020, 10, 294–308. Available online: https://www.semanticscholar.org/paper/Influencia-de-la-temperatura-de-tostado-en-la-de-la-Vega-Roci/faba4a8edac30ddaf713cc481bd5f991bf3cfb34?utm_source=direct_link (accessed on 8 September 2024).
- Djali, M.; Santasa, K.; Indiarto, R.; Subroto, E.; Fetriyuna, F.; Lembong, E. Proximate Composition and Bioactive Compounds of Cocoa Bean Shells as a By-Product from Cocoa Industries in Indonesia. Foods 2023, 12, 3316. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef]
- Jokić, S.; Nastić, N.; Vidović, S.; Flanjak, I.; Aladić, K.; Vladić, J. An approach to value cocoa bean by-product based on subcritical water extraction and spray drying using different carriers. Sustainability 2020, 12, 2174. [Google Scholar] [CrossRef]
- Salager, J.L. Granulometría—Teoría. Ed. In Laboratorio FIRP Escuela de Ingeniería Química, 1st ed.; Universidad de Los Andes Mérida: Mérida, Venezuela, 2007; pp. 1–32. [Google Scholar]
- Jumpa, M.L. Formulación y Evaluación Sensorial de un Filtrante Bioactivo Basado en Mashua (Tropaeolum tuberosum) y Tusa de Maíz Morado. Bachelor’s Thesis, Universidad Nacional del Centro del Perú, Huancayo, Perú, 2018. [Google Scholar]
- Xiao, W.; Zhang, Y.; Fan, C.; Han, L. A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chem. 2017, 214, 242–247. [Google Scholar] [CrossRef]
- Ortegas-Rivas, E. Handling and Processing of Food Powders and Particulars, Chapter 4. In Encapsulated and Powdered Foods; Onwulata, C., Ed.; CRS Press: Boca Raton, FL, USA; Taylor Francis Group: Abingdon, UK, 2005. [Google Scholar]
- Murillo-Baca, S.M.; Ponce-Rosas, F.; Huamán-Murillo, M.J. Physicochemical characteristics, bioactive compounds and minerals content in cocoa fruit (Theobroma cacao L.) shell flour. Manglar 2020, 17, 67–73. [Google Scholar] [CrossRef]
- Loza de la Cruz, R.; Inga-Orihuela, E.L. Elaboración de una Bebida Funcional a Partir de la Cascarilla de Cacao (Theobroma cacao L.). Bachelor’s Thesis, Universidad Nacional Daniel Alcides Carrión, Cerro de Pasco, Perú, 2018. Available online: http://repositorio.undac.edu.pe/handle/undac/593 (accessed on 10 July 2024).
- Iglesias-Guevara, D.; Morejón-Ramos, B.; Ruiz-Karell, B.J.; Pérez-Santana, D. Optimización del proceso de obtención de un extracto acuoso de cascarilla de cacao. Rev. CENIC Cienc. Quím. 2022, 53, 060–071. [Google Scholar]
- Sacchetti, G.; Ioannone, F.; De Gregorio, M.; Di Mattia, C.; Serafini, M.; Mastrocola, D. Non enzymatic browning during cocoa roasting as affected by processing time and temperature. J. Food Eng. 2016, 169, 44–52. [Google Scholar] [CrossRef]
- Ghodki, B.M.; Goswami, T.K. Effect of grinding temperatures on particle and physicochemical characteristics of black pepper powder. Powder Technol. 2016, 299, 168–177. [Google Scholar] [CrossRef]
- Daniela, C.S.G.; Eduardo, D.R.D. Obtención de un Colorante Natural a Partir de la Pulpa del café (Coffea arabica) Proveniente del Municipio de Sandoná (Nariño) para la Tinción en Fibras Textiles de 100% Algodón y Cuero; Universidad Mariana. Facultad de Ingeniería Programa de Ingeniería de Procesos: San Juan de Pasto, Colombia, 2023. [Google Scholar]
- Aldas-Morejon, J.; Otero-Tuarez, V.; Revilla-Escobar, K.; Carrillo-Pisco, M.; Sánchez-Aguilera, D. Incidence of roasting on the physical-chemical characteristics and alkaloids of the cocoa husk (Theobroma cacao) and its effect on the organoleptic properties of an infusion. Agroindustrial Sci. 2023, 13, 15–21. [Google Scholar] [CrossRef]
- Rosas-Patiño, G.; Puentes-Páramo, Y.J.; Menjivar-Flores, J.C. Efecto del pH sobre la concentración de nutrientes en cacao (Theobroma cacao L.) en la Amazonia Colombiana. Rev. U.D.C.A. Act. Div. Cient. 2021, 24, e1643. [Google Scholar] [CrossRef]
- Aldave-Palacios, G. Efecto de la Temperatura y Tiempo de Tostado en los Caracteres Sensoriales y en las Propiedades Químicas de Granos de Cacao (Theobroma cacao L.) Procedente de Uchiza, San Martín—Perú Para la Obtención de NIBS. Master’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2016. [Google Scholar]
- Muñoz-Velázquez, E.E.; Rivas-Díaz, K.; Loarca-Piña, M.G.F.; Mendoza-Díaz, S.; Reynoso-Camacho, R.; Ramos-Gómez, M. Comparación del contenido fenólico, capacidad antioxidante y actividad antiinflamatoria de infusiones herbales comerciales. Rev. Mex. De Cienc. Agrícolas 2012, 3, 481–495. [Google Scholar] [CrossRef]
- Ortiz-Islas, S.; Espinosa-Leal, C.A.; González-Rodríguez, T.; García-Lara, S. Enhancing the Antioxidant Activity of Tea (Camellia sinensis) Through Common Herbal Infusions. Foods 2024, 13, 3284. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Morales-Sillero, A.; Fernández-Bolaños, J.; Bermúdez-Oria, A.; Morales, A.A.; Rodríguez-Gutiérrez, G. Cocoa bean husk: Industrial source of antioxidant phenolic extract. J. Sci. Food Agric. 2019, 99, 325–333. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Zeppa, G.; Ferrocino, I.; Stévigny, C.; Barbosa-Pereira, L. Chemometric classification of cocoa bean shells based on their polyphenolic profile determined by RP-HPLC-PDA analysis and spectrophotometric assays. Antioxidants 2021, 10, 1533. [Google Scholar] [CrossRef]
- Cantele, C.; Rojo-Poveda, O.; Bertolino, M.; Ghirardello, D.; Vladimiro, C.; Barbosa-Pereira, L.; Zeppa, G. In vitro bioaccessibility and functional properties of phenolic compounds from enriched beverages based on cocoa bean shell. Foods 2020, 9, 715. [Google Scholar] [CrossRef]
- Castromonte, M.; Wacyk, J.; Valenzuela, C. Encapsulación de extractos antioxidantes desde sub-productos agroindustriales: Una revisión. Rev. Chil. Nutr. 2020, 47, 836–847. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Technological and in Vitro Antioxidant Properties of Cocoa (Theobroma cacao L.) Co-Products. Food Res. Int. 2012, 49, 39–45. [Google Scholar] [CrossRef]
- Lee, L.S.; Kim, S.H.; Kim, Y.B.; Kim, Y.C. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 2014, 19, 9173–9186. [Google Scholar] [CrossRef] [PubMed]
- Víctor, U.-P. Determinación de la Capacidad Antioxidante de la Mezcla de un Extracto Proteíco de Cushuro (Nostoc Sphaericum Vaucher ex Bornet & Flahault) e Infusión de té Verde. Bachelor’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2023. [Google Scholar]
Samples CBS Powders | Coded |
---|---|
Electrical Grinding of CBS at 40 mesh | EG-CBS-40 |
Electrical Grinding of CBS at 60 mesh | EG-CBS-60 |
Electrical Grinding of CBS at 100 mesh | EG-CBS-100 |
Mechanical Grinding of CBS at 40 mesh | MG-CBS-40 |
Mechanical Grinding of CBS at 60 mesh | MG-CBS-60 |
Mechanical Grinding of CBS at 100 mesh | MG-CBS-100 |
Samples CBS Infusions | Coded |
---|---|
Infusion Electrical Grinding of CBS at 40 mesh | IEG-CBS-40 |
Infusion Electrical Grinding of CBS at 60 mesh | IEG-CBS-60 |
Infusion Electrical Grinding of CBS at 100 mesh | IEG-CBS-100 |
Infusion Mechanical Grinding of CBS at 40 mesh | IMG-CBS-40 |
Infusion Mechanical Grinding of CBS at 60 mesh | IMG-CBS-60 |
Infusion Mechanical Grinding of CBS at 100 mesh | IMG-CBS-100 |
Samples | Moisture (%) |
---|---|
EG-CBS-40 | 4.00 ± 0.00 bc |
EG-CBS-60 | 4.66 ± 0.57 ab |
EG-CBS-100 | 5.00 ± 0.00 cb |
MG-CBS-40 | 3.33 ± 0.57 a |
MG-CBS-60 | 6.70 ± 0.52 d |
MG-CBS-100 | 6.70 ± 0.52 d |
Powders | |||
Samples | L* | a* | b* |
EG-CBS-40 | 17.62 ± 1.35 c | 11.78 ± 0.62 bc | 34.8 ± 1.01 bc |
EG-CBS-60 | 17.51 ± 1.83 c | 39.61 ± 8.02 a | 114.53 ± 13.7 a |
EG-CBS-100 | 36.98 ± 3.07 b | 15.97 ± 3.8 bc | 47.81 ± 16.07 bc |
MG-CBS-40 | 37.96 ± 1.55 ab | 20.0 ± 2.03 b | 58.02 ± 8.09 b |
MG-CBS-60 | 38.13 ± 0.95 ab | 20.2 ± 1.15 b | 57.07 ± 5.29 b |
MG-CBS-100 | 43.23 ± 2.79 a | 8.40 ± 0.39 c | 24.63 ± 0.74 c |
Infusions | |||
IEGC-40 | 17.85 ± 0.04 b | 0.90 ± 0.05 ab | −0.23 ± 0.03 c |
IEGC-60 | 17.89 ± 0.03 ab | 0.92 ± 0.05 a | −0.21 ± 0.04 c |
IEGC-100 | 12.37 ± 0.05 c | 0.79 ± 0.09 c | 0.50 ± 0.16 b |
IMGC-40 | 17.91 ± 0.05 a | 0.88 ± 0.04 ab | −0.13 ± 0.03 c |
IMGC-60 | 17.88 ± 0.02 ab | 0.94 ± 0.05 a | −0.24 ± 0.05 c |
IMGC-100 | 11.99 ± 0.05 d | 0.82 ± 0.08 bc | 0.62 ± 0.07 a |
Powders | Infusions | ||
---|---|---|---|
Samples | pH | Samples | pH |
EG-CBS-40 | 5.20 ± 0.11 a | IEGC-40 | 5.51 ± 0.01 b |
EG-CBS-60 | 5.04 ± 0.12 a | IEGC-60 | 5.38 ± 0.03 a |
EG-CBS-100 | 5.40 ± 0.02 a | IEGC-100 | 5.43 ± 0.01 ab |
MG-CBS-40 | 5.47 ± 0.42 a | IMGC-40 | 5.37 ± 0.0 a |
MG-CBS-60 | 5.12 ± 0.14 a | IMGC-60 | 5.39 ± 0.0 a |
MG-CBS-100 | 5.34 ± 0.05 a | IMMC-100 | 5.43 ± 0.01 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Domínguez, E.; Espinosa-Solís, V.; Hernández-Nava, R.G.; García-Barrientos, R.; Suárez-Rodríguez, C.d.P.; Gallardo-Bernal, P.; Figueroa-Wences, V.M.; Sánchez-Mundo, M.d.l.L. Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions. Processes 2024, 12, 2905. https://doi.org/10.3390/pr12122905
Hernández-Domínguez E, Espinosa-Solís V, Hernández-Nava RG, García-Barrientos R, Suárez-Rodríguez CdP, Gallardo-Bernal P, Figueroa-Wences VM, Sánchez-Mundo MdlL. Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions. Processes. 2024; 12(12):2905. https://doi.org/10.3390/pr12122905
Chicago/Turabian StyleHernández-Domínguez, Elizabeta, Vicente Espinosa-Solís, Rocio Guadalupe Hernández-Nava, Raquel García-Barrientos, Carmen del Pilar Suárez-Rodríguez, Pável Gallardo-Bernal, Víctor Manuel Figueroa-Wences, and María de la Luz Sánchez-Mundo. 2024. "Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions" Processes 12, no. 12: 2905. https://doi.org/10.3390/pr12122905
APA StyleHernández-Domínguez, E., Espinosa-Solís, V., Hernández-Nava, R. G., García-Barrientos, R., Suárez-Rodríguez, C. d. P., Gallardo-Bernal, P., Figueroa-Wences, V. M., & Sánchez-Mundo, M. d. l. L. (2024). Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions. Processes, 12(12), 2905. https://doi.org/10.3390/pr12122905