Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of HESs
2.2. Laboratory Extraction Experiment
2.2.1. Effect of Phase Contact Time on Extraction Efficiency
2.2.2. Influence of the Precipitator
2.2.3. Influence of the Ratio of Water and Organic Phases
2.2.4. Effect of Phase Contact Time on Re-Extraction Efficiency
2.2.5. Chemical Resistance and Reusability of HES
2.2.6. The Rate of Phase Delamination
2.2.7. HCl Extraction
2.3. Continuous Extraction Experiment on Mixer-Settlers
3. Materials and Methods
3.1. Reagents
3.2. Preparation of HES
3.3. Characterization of HES
3.4. HES Extraction Experiment
3.5. Investigation of the Phase Delamination Rate
3.6. Process Scaling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mu, L.; Gao, J.; Zhang, Q.; Kong, F.; Zhang, Y.; Ma, Z.; Sun, C.; Lv, S. Research Progress on Deep Eutectic Solvents and Recent Applications. Processes 2023, 11, 1986. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chem. A Eur. J. 2007, 13, 6495–6501. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-Eutectic Solvents. Green. Chem. 2020, 22, 4210–4221. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, W.; Aldana-González, J.; Le Manh, T.; Romero-Romo, M.; Mejía-Caballero, I.; Ramírez-Silva, M.T.; Arce-Estrada, E.M.; Mugica-Álvarez, V.; Palomar-Pardavé, M. A Deep Eutectic Solvent as Leaching Agent and Electrolytic Bath for Silver Recovery from Spent Silver Oxide Batteries. J. Electrochem. Soc. 2021, 168, 016508. [Google Scholar] [CrossRef]
- Mohamadi, S.; Esfandiari, Z.; Khodadadi, M.; Dehaghani, M.S.T. Simultaneous Analysis of Benzoic and Sorbic Acids in Orange Juice Using Thymol/Water Natural Deep Eutectic Solvent and DLLME Method Followed by High Performance Liquid Chromatography. Food Meas. 2024, 18, 6285–6294. [Google Scholar] [CrossRef]
- Shishov, A.; Gerasimov, A.; Nechaeva, D.; Volodina, N.; Bessonova, E.; Bulatov, A. An Effervescence-Assisted Dispersive Liquid–Liquid Microextraction Based on Deep Eutectic Solvent Decomposition: Determination of Ketoprofen and Diclofenac in Liver. Microchem. J. 2020, 156, 104837. [Google Scholar] [CrossRef]
- Shishov, A.; Israelyan, D.; Bulatov, A. Automated Deep Eutectic Solvent-Based Chromatomembrane Microextraction: Separation and Preconcentration of Bisphenols from Aqueous Samples. Sep. Purif. Technol. 2024, 338, 126480. [Google Scholar] [CrossRef]
- Vannuchi, N.; Braga, A.R.C.; De Rosso, V.V. High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe Edulis) Using Deep Eutectic Solvents. Processes 2022, 10, 615. [Google Scholar] [CrossRef]
- Islam, S.; Rubio, C.; Rafikova, K.; Mutelet, F. Desulfurization and Denitrogenation Using Betaine-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2024, 69, 2244–2254. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhang, X.; Shen, J.; Wang, Y.; Niu, Y.; Liu, G.; Xu, Q. Study on Extraction Desulfurization of Road-Paving Asphalt by Deep Eutectic Solvents. J. Ind. Eng. Chem. 2024, S1226086X24006166. [Google Scholar] [CrossRef]
- Maxim, C.; Blaga, A.C.; Tataru-Farmus, R.-E.; Suteu, D. Acmella Oleracea Metabolite Extraction Using Natural Deep Eutectic Solvents. Processes 2024, 12, 1686. [Google Scholar] [CrossRef]
- Lim, J.J.Y.; Hoo, D.Y.; Tang, S.Y.; Manickam, S.; Yu, L.J.; Tan, K.W. One-Pot Extraction of Nanocellulose from Raw Durian Husk Fiber Using Carboxylic Acid-Based Deep Eutectic Solvent with in Situ Ultrasound Assistance. Ultrason. Sonochem. 2024, 106, 106898. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, B.; Ge, H.; Wang, S.; Li, B.; Xu, H. Microwave-Assisted Extraction of Cellulose and Aromatic Compounds from Rose Petals Based on Deep Eutectic Solvent. Int. J. Biol. Macromol. 2024, 258, 129058. [Google Scholar] [CrossRef] [PubMed]
- Lokesh Kumar, S.; Tabassum, S.; Govindaraju, S. Novel Deep Eutectic Solvent Catalysed Single-Pot Open Flask Synthesis of Tetrasubstituted-1H-Pyrroles. J. Mol. Liq. 2024, 401, 124592. [Google Scholar] [CrossRef]
- Paparella, A.N.; Stallone, M.; Pulpito, M.; Perna, F.M.; Capriati, V.; Vitale, P. An Enhanced Stereoselective Synthesis of α,β-Unsaturated Esters through the Horner–Wadsworth–Emmons Reaction in Deep Eutectic Solvents. Org. Biomol. Chem. 2024, 22, 1885–1891. [Google Scholar] [CrossRef]
- Valipour, Z.; Hosseinzadeh, R.; Sarrafi, Y.; Maleki, B. Natural Deep Eutectic Solvent as a Green Catalyst for the One-Pot Synthesis of Chromene and 4H-Pyran Derivatives. Org. Prep. Proced. Int. 2024, 56, 105–117. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Zubeir, L.F.; Van Den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green. Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Tereshatov, E.E.; Boltoeva, M.Y.; Folden, C.M. First Evidence of Metal Transfer into Hydrophobic Deep Eutectic and Low-Transition-Temperature Mixtures: Indium Extraction from Hydrochloric and Oxalic Acids. Green. Chem. 2016, 18, 4616–4622. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Kumar Banjare, M.; Behera, K.; Satnami, M.L.; Pandey, S.; Ghosh, K.K. Self-Assembly of a Short-Chain Ionic Liquid within Deep Eutectic Solvents. RSC Adv. 2018, 8, 7969–7979. [Google Scholar] [CrossRef] [PubMed]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResources 2018, 13, 5042–5051. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. Eng. Proc. 2023, 37(1), 68. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol. Theor. Found. Chem. Eng. 2022, 56, 221–229. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Lobovich, D.V.; Milevskii, N.A.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. The Use of Organophosphorus Extractants as a Component of Hydrophobic Deep Eutectic Solvents (HDES) for the Processing of Spent Lithium-iron Phosphate Batteries. Hydrometallurgy 2024, 228, 106369. [Google Scholar] [CrossRef]
- Milevskii, N.A.; Zinov’eva, I.V.; Kozhevnikova, A.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide. Int. J. Mol. Sci. 2023, 24, 14032. [Google Scholar] [CrossRef]
- Gilmore, M.; McCourt, É.N.; Connolly, F.; Nockemann, P.; Swadźba-Kwaśny, M.; Holbrey, J.D. Hydrophobic Deep Eutectic Solvents Incorporating Trioctylphosphine Oxide: Advanced Liquid Extractants. ACS Sustain. Chem. Eng. 2018, 6, 17323–17332. [Google Scholar] [CrossRef]
- Ni, S.; Su, J.; Zhang, H.; Zeng, Z.; Zhi, H.; Sun, X. A Cleaner Strategy for Comprehensive Recovery of Waste SmCo Magnets Based on Deep Eutectic Solvents. Chem. Eng. J. 2021, 412, 128602. [Google Scholar] [CrossRef]
- Milevsky, N.A.; Zinovieva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extractive Separation of Co/Ni Pair With the Deep Eutectic Solvent Aliquat 336/Timol. Theor. Found. Chem. Eng. 2022, 56, 45–52. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, D.; Zhao, Y.; Li, T.; Zhang, K.; Fan, J. Highly Efficient Extraction/Separation of Cr (VI) by a New Family of Hydrophobic Deep Eutectic Solvents. Chemosphere 2020, 241, 125082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Ji, L.; Li, L. Separation of Lithium from Alkaline Solutions with Hydrophobic Deep Eutectic Solvents Based on β-Diketone. J. Mol. Liq. 2021, 344, 117729. [Google Scholar] [CrossRef]
- Zante, G.; Braun, A.; Masmoudi, A.; Barillon, R.; Trébouet, D.; Boltoeva, M. Solvent Extraction Fractionation of Manganese, Cobalt, Nickel and Lithium Using Ionic Liquids and Deep Eutectic Solvents. Miner. Eng. 2020, 156, 106512. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Type V Deep Eutectic Solvents: Design and Applications. Curr. Opin. Green. Sustain. Chem. 2022, 35, 100612. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163. [Google Scholar] [CrossRef]
- Xin, K.; Roghair, I.; Gallucci, F.; Van Sint Annaland, M. Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Modelling. J. Mol. Liq. 2021, 325, 115227. [Google Scholar] [CrossRef]
- Florindo, C.; Romero, L.; Rintoul, I.; Branco, L.C.; Marrucho, I.M. From Phase Change Materials to Green Solvents: Hydrophobic Low Viscous Fatty Acid–Based Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2018, 6, 3888–3895. [Google Scholar] [CrossRef]
- Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12, 1549–1559. [Google Scholar] [CrossRef]
- Alhadid, A.; Mokrushina, L.; Minceva, M. Influence of the Molecular Structure of Constituents and Liquid Phase Non-Ideality on the Viscosity of Deep Eutectic Solvents. Molecules 2021, 26, 4208. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability. J. Sustain. Metall. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Azzouz, A.; Hayyan, M. Techno-Economic Feasibility Analysis: The Missing Piece in the Puzzle of Deep Eutectic Solvents. Sustain. Mater. Technol. 2024, 39, e00795. [Google Scholar] [CrossRef]
- Tereshatov, E.E.; Volia, M.F.; Folden Iii, C.M. Menthol-Based Eutectic Solvent for Indium and Thallium Partition from Hydrochloric Acid Media. J. Mol. Liq. 2023, 391, 123339. [Google Scholar] [CrossRef]
- Vargas, S.J.R.; Pérez-Sánchez, G.; Schaeffer, N.; Coutinho, J.A.P. Solvent Extraction in Extended Hydrogen Bonded Fluids—Separation of Pt(iv) from Pd(ii) Using TOPO-Based Type V DES. Green. Chem. 2021, 23, 4540–4550. [Google Scholar] [CrossRef]
- Dewulf, B.; Riaño, S.; Binnemans, K. Separation of Heavy Rare-Earth Elements by Non-Aqueous Solvent Extraction: Flowsheet Development and Mixer-Settler Tests. Sep. Purif. Technol. 2022, 290, 120882. [Google Scholar] [CrossRef]
- Tang, J.; Petranikova, M.; Ekberg, C.; Steenari, B.-M. Mixer-Settler System for the Recovery of Copper and Zinc from MSWI Fly Ash Leachates: An Evaluation of a Hydrometallurgical Process. J. Clean. Prod. 2017, 148, 595–605. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, R.-Z.; Hou, Z.-A.; Li, Z.-L. Investigation of the Extraction Kinetics of Cobalt and Nickel and the Optimization of Operation Parameters in a Mixer-Settler for the Extraction of Cobalt. Hydrometallurgy 1987, 18, 225–241. [Google Scholar] [CrossRef]
- Rodrigues, I.R.; Deferm, C.; Binnemans, K.; Riaño, S. Separation of Cobalt and Nickel via Solvent Extraction with Cyanex-272: Batch Experiments and Comparison of Mixer-Settlers and an Agitated Column as Contactors for Continuous Counter-Current Extraction. Sep. Purif. Technol. 2022, 296, 121326. [Google Scholar] [CrossRef]
- Tanaka, M.; Huang, Y.; Yahagi, T.; Hossain, M.K.; Sato, Y.; Narita, H. Solvent Extraction Recovery of Nickel from Spent Electroless Nickel Plating Baths by a Mixer-Settler Extractor. Sep. Purif. Technol. 2008, 62, 97–102. [Google Scholar] [CrossRef]
- Moreno, C.M.; Pérez-Correa, J.R.; Otero, A. Dynamic Modelling of Copper Solvent Extraction Mixer–Settler Units. Miner. Eng. 2009, 22, 1350–1358. [Google Scholar] [CrossRef]
- Hadjiev, D.; Paulo, J.B.A. Extraction Separation in Mixer–Settlers Based on Phase Inversion. Sep. Purif. Technol. 2005, 43, 257–262. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, B.; Sampath, M.; Sivakumar, D.; Kamachi Mudali, U.; Natarajan, R. Development of a Micro-Mixer-Settler for Nuclear Solvent Extraction. J. Radioanal. Nucl. Chem. 2012, 291, 797–800. [Google Scholar] [CrossRef]
- Spathariotis, S.; Peeters, N.; Ryder, K.S.; Abbott, A.P.; Binnemans, K.; Riaño, S. Separation of Iron(Iii), Zinc(Ii) and Lead(Ii) from a Choline Chloride–Ethylene Glycol Deep Eutectic Solvent by Solvent Extraction. RSC Adv. 2020, 10, 33161–33170. [Google Scholar] [CrossRef] [PubMed]
- Lobovich, D.V.; Solov’eva, S.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment. Theor. Found. Chem. Eng. 2023, 57, 1276–1291. [Google Scholar] [CrossRef]
- Lobovich, D.V.; Zinov’eva, I.V.; Milevskii, N.A.; Kostanyan, A.E.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor. Processes 2024, 12, 488. [Google Scholar] [CrossRef]
- Gu, Z.-M. A New Liquid Membrane Technology—Electrostatic Pseudo Liquid Membrane. J. Membr. Sci. 1990, 52, 77–88. [Google Scholar] [CrossRef]
- Kostanyan, A.; Safiulina, A.; Tananaev, I.; Myasoedov, B. Multiphase Extraction: Design of Single- and Multistage Separation Using Liquid Pseudomembranes. Dokl. Chem. 2005, 404, 203–205. [Google Scholar] [CrossRef]
- Kostanyan, A.E.; Belova, V.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Copper from Sulfuric Acid Solutions Based on Pseudo-Liquid Membrane Technology. Membranes 2023, 13, 418. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Uvarova, E.S.; Maltseva, V.E.; Ananyev, I.V.; Milevskii, N.A.; Fedulov, I.S.; Zakhodyaeva, Y.A.; Voshkin, A.A. Design of Eutectic Solvents with Specified Extraction Properties Based on Intermolecular Interaction Energy. Molecules 2024, 29, 5022. [Google Scholar] [CrossRef]
- Sokolov, A.; Valeev, D.; Kasikov, A. Solvent Extraction of Iron(III) from Al Chloride Solution of Bauxite HCl Leaching by Mixture of Aliphatic Alcohol and Ketone. Metals 2021, 11, 321. [Google Scholar] [CrossRef]
HES | [H2O], wt% Prior to Contact with Water | [H2O], wt% After Exposure to Water (24 h) |
---|---|---|
Oct/Cam | 0.375 | 3.426 |
Oct/Hpph | 0.312 | 3.104 |
Oct/Men | 0.302 | 3.183 |
Oct/OctA | 0.124 | 3.381 |
Oct/Thy | 0.329 | 3.081 |
HES | Rate of Phase Delamination |
---|---|
Oct/Cam | 1 min |
Oct/Hpph | 1 min 20 s |
Oct/Men | 1 min 10 s |
Oct/OctA | 6 min |
Oct/Thy | 2 min 50 s |
Reagent | Supplier | CAS | Purity, wt.% * |
---|---|---|---|
1-Octanol | Macklin | 111–87–5 | 99.5 |
Camphor | Macklin | 76–22–2 | 96 |
2′-Hydroxypropiophenone | Macklin | 610–99–1 | ≥ 98 |
L-Menthol | Acros | 2216–51–5 | 99 |
1-Octanoic acid | Merck | 124–07–2 | >99 |
Thymol | Macklin | 89–83–8 | >99 |
FeCl3 × 6H2O | Macklin | 7705–08–0 | 99 |
CaCl2 × 2H2O | Sigma-Aldrich | 10035–04–8 | ≥99.0 |
HCl | Macklin | 7647–01–0 | 37 |
Solvent | Hydranal Honeywell | - | - |
Titrant 5 | Hydranal Honeywell | - | - |
Coulomat A | Hydranal Honeywell | - | - |
Coulomat CG | Hydranal Honeywell | - | - |
Composite 5 K | Hydranal Honeywell | - | - |
Working Medium K | Hydranal Honeywell | - | - |
Coulomat AK | Hydranal Honeywell | - | - |
Coulomat CG-K | Hydranal Honeywell | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhevnikova, A.V.; Lobovich, D.V.; Milevskii, N.A.; Fedulov, I.S.; Zakhodyaeva, Y.A.; Voshkin, A.A. Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting. Processes 2024, 12, 2879. https://doi.org/10.3390/pr12122879
Kozhevnikova AV, Lobovich DV, Milevskii NA, Fedulov IS, Zakhodyaeva YA, Voshkin AA. Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting. Processes. 2024; 12(12):2879. https://doi.org/10.3390/pr12122879
Chicago/Turabian StyleKozhevnikova, Arina V., Dmitriy V. Lobovich, Nikita A. Milevskii, Igor S. Fedulov, Yulia A. Zakhodyaeva, and Andrey A. Voshkin. 2024. "Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting" Processes 12, no. 12: 2879. https://doi.org/10.3390/pr12122879
APA StyleKozhevnikova, A. V., Lobovich, D. V., Milevskii, N. A., Fedulov, I. S., Zakhodyaeva, Y. A., & Voshkin, A. A. (2024). Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting. Processes, 12(12), 2879. https://doi.org/10.3390/pr12122879