Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis of H60N6Na2Ca2W12O60 Cluster
2.3. Material Characterization
2.4. Photocatalytic Degradation
3. Results and Discussions
3.1. Characterization of Ca-POM Cluster
3.2. Photocatalysis Investigations of Ca–POM
3.3. Photocatalytic Mechanism
Catalytic | Dye | ƛ irra (nm) | Optical Band Gap/eV | PCE% | kapp (min−1) | Time/min | Reference |
---|---|---|---|---|---|---|---|
Ca–POM | MB | 254 | 3.29 | 81.21 | 1.17 × 10−2 | 140 | Current work |
Ca–POM | MO | 254 | 3.29 | 25.80 | 3.58 × 10−4 | 140 | Current work |
NiO-ZnONCs | MB | 365 | 3.69 | 72 | 1.50 × 10−2 | 80 | [51] |
Cr2O3-CNT NPs | MB | >420 | - | 68 | 9.80 × 10−4 | 120 | [52] |
ZnO NPs | MB | 254 | 71.1 | 4.30 × 10−3 | 150 | [53] | |
TCPP/CuPOM/TiO2 | MB | UV | 3.2 | 49 | - | 80 | [54] |
TCPP/ZnPOM/TiO2 | MB | UV | 3.2 | 44 | - | 80 | [54] |
CdS nanocrystals | MB | UV | 2.91 | 35 | 3.42 × 10−2 | 30 | [55] |
PMo11V | MB | UV | - | 50.8 | - | 120 | [39] |
Cu-POM-TiO2 | MB | UV | - | 41.58 | 2.9 × 10−2 | 180 | [40] |
Zn-POM-TiO2 | MB | UV | - | 35.34 | 2.6 × 10−2 | 180 | [40] |
4. Comparative Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thang, N.Q.; Sabbah, A.; Chen, L.C.; Chen, K.H.; Thi, C.M.; Van Viet, P. High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials. Chemosphere 2021, 282, 130971. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lv, S.; Wang, S.; Bao, M.; Zhang, X.; Gao, Y.; Liu, Y.Y.; Zhang, Z.G.; Zheng, L.B.; Ke, J. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Sep. Purif. Technol. 2021, 274, 118973. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Adv. Colloid Interface Sci. 2013, 193, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C. Adsorption of Methylene Blue on Activated Carbon Produced from Flamboyant Pods (Delonix regia): Study of Adsorption Isotherms and Kinetic Models. Chem. Eng. J. 2011, 168, 722–730. [Google Scholar] [CrossRef]
- Alamrani, N.A.; Al-Aoh, H.A.; Aljohani, M.M.H.; Bani-Atta, S.A.; Sobhi, M.; Khalid, M.S.; Darwish, A.A.A.; Keshk, A.A.; Abdelfattah, M.A.A. Wastewater purification from permanganate ions by sorption on the Ocimum basilicum leaves powder modified by zinc chloride. J. Chem. 2021, 2021, 5561829. [Google Scholar] [CrossRef]
- Mustafa, S.K.; Al-Aoh, H.A.; Bani-Atta, S.A.; Alrawashdeh, L.R.; Aljohani, M.M.; Alsharif, M.A.; Darwish, A.; Al-Shehri, H.; Ahmad, M.A.; Al-Tweher, J.N.; et al. Enhance the adsorption behavior of methylene blue from wastewater by using ZnCl2 modified neem (Azadirachta indica) leaves powder. Desalination Water Treat. 2020, 209, 367–378. [Google Scholar] [CrossRef]
- Bani-Atta, S.A. Zinc chloride modification of sage leaves powder and its application as an adsorbent for KMnO4 removal from aqueous solutions. Mater. Res. Express 2020, 7, 095511. [Google Scholar] [CrossRef]
- Bani-Atta, S.A. Potassium permanganate dye removal from synthetic wastewater using a novel, low-cost adsorbent modified from the powder of Foeniculum vulgare seeds. Sci. Rep. 2022, 12, 4547. [Google Scholar] [CrossRef]
- Bani-Atta, S.A.; Al-Aoh, H.A.; Aljohani, M.M.; Keshka, A.A.; Al-Shehri, H.S.; Mustafa, S.K.; Alamrani, N.A.; Darwish, A.A.; Sobhi, M. Methylene Blue sorption by the chemically modified Ocimum basilicum leaves powder. Desalination Water Treat. 2021, 222, 237–245. [Google Scholar] [CrossRef]
- Bani-Atta, S.A.; Al-Aoh, H.A. Methylene blue dye elimination from synthetic wastewater by modified adsorbent produced from Foeniculum vulgare waste: Thermodynamic, equilibrium, and kinetic studies. Desalination Water Treat. 2024, 320, 100649. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewater: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Peng, B.; Chen, Z.; Xie, Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef] [PubMed]
- Zare, E.N.; Iftekhar, S.; Park, Y.; Joseph, J.; Srivastava, V.; Khan, M.A.; Makvandi, P.; Sillanpaa, M.; Varma, R.S. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere 2021, 280, 130907. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Isa, M.H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Danwittayakul, S.; Jaisai, M.; Dutta, J. Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Appl. Catal. B Environ. 2015, 163, 1–8. [Google Scholar] [CrossRef]
- Hill, C.L. Introduction: Polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem. Rev. 1998, 98, 1–2. [Google Scholar] [CrossRef]
- Long, D.L.; Burkholder, E.; Cronin, L. Polyoxometalate Clusters, Nanostructures, and Materials: From Self-Assembly to Designer Materials and Devices. Chem. Soc. Rev. 2007, 36, 105–121. [Google Scholar] [CrossRef]
- Pope, M.T. Borrás-Almenar, J.J., Coronado EMüller, A., Pope, M.T., Eds.; Polyoxometalate Molecular Science; Springer: Dordrecht, The Netherlands, 2003; pp. 3–31. [Google Scholar]
- Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Coronado, E.; Giménez-Saiz, C.; Gómez-García, C.J. Recent Advances in Polyoxometalate-Containing Molecular Conductors. Coord. Chem. Rev. 2005, 249, 1776–1796. [Google Scholar] [CrossRef]
- Alsulaim, G.M.; Aboraia, A.M.; Hamdalla, T.A.; Darwish, A.A.A. High-Efficient Photocatalytic Degradation of Industrial Dyes (MB, RhD, and MB/RhD) Using Zn100−xSmxO Nanoparticles. Phys. Scr. 2023, 98, 065920. [Google Scholar] [CrossRef]
- Papaconstantinou, E. Photochemistry of Polyoxometallates of Molybdenum and Tungsten and/or Vanadium. Chem. Soc. Rev. 1989, 18, 1–31. [Google Scholar] [CrossRef]
- Streb, C. New Trends in Polyoxometalate Photoredox Chemistry: From Photosensitisation to Water Oxidation Catalysis. Dalton Trans. 2012, 41, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.M.; Wales, D.J.; Newton, G.N. Shining a light on the photosensitisation of organic–inorganic hybrid polyoxometalates. Dalton Trans. 2018, 47, 5120–5136. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Yang, G.Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef]
- Nomiya, K.; Sugie, Y.; Miyazaki, T.; Miwa, M. Catalysis by heteropolyacids—ix. Photocatalytic oxidation of isopropyl alcohol to acetone under oxygen using tetrabutylammonium decatungstate. Polyhedron 1986, 5, 1267–1271. [Google Scholar] [CrossRef]
- Omwoma, S.; Gore, C.T.; Ji, Y.; Hu, C.; Song, Y.F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29. [Google Scholar] [CrossRef]
- Kim, S.; Yeo, J.; Choi, W. Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Appl. Catal. B Environ. 2008, 84, 148–155. [Google Scholar] [CrossRef]
- Troupis, A.; Hiskia, A.; Papaconstantinou, E. Photocatalytic reduction and recovery of copper by polyoxometalates. Environ. Sci. Technol. 2002, 36, 5355–5362. [Google Scholar] [CrossRef]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 1996, 41, 113–252. [Google Scholar]
- Arslan-Alaton, I.; Ferry, J.L. Application of polyoxotungstates as environmental catalysts: Wet air oxidation of acid dye Orange II. Dye. Pigment. 2002, 54, 25–36. [Google Scholar] [CrossRef]
- Chai, F.; Wang, L.; Xu, L.; Wang, X.; Huang, J. Degradation of dye on polyoxotungstate nanotube under molecular oxygen. Dye. Pigment. 2008, 76, 113–117. [Google Scholar] [CrossRef]
- Chen, W.L.; Chen, B.W.; Tan, H.Q.; Li, Y.G.; Wang, Y.H.; Wang, E.B. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibit the photocatalytic and electrocatalytic properties. J. Solid. State Chem. 2010, 183, 310–321. [Google Scholar] [CrossRef]
- Suhaimi, N.A.; Roslan, N.N.; Amirul, N.B.; Lau, H.L.; Hasman, A.A.; Nur, M.; Lim, J.W.; Usman, A. Unraveling the photocatalytic degradation kinetics and efficiency of methylene blue, rhodamine B, and auramine O in their ternary mixture: Diffusion and conformational insights. Reac. Kinet. Mech. Cat. 2024, 137, 3441–3462. [Google Scholar] [CrossRef]
- Li, H.; Gao, S.; Cao, M.; Cao, R. Self-assembly of polyoxometalate–thionine multilayer films on magnetic microspheres as photocatalyst for methyl orange degradation under visible light irradiation. J. Colloid. Interface Sci. 2013, 394, 434–440. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Q.Q.; Cui, Z.W.; Shi, S.; Long, J.Y.; Wang, X.L.; Fei, B.L. A novel octamolybdate-based organic–inorganic hybrid as photo-Fenton-like catalyst for degradation of methylene blue. Appl. Organomet. Chem. 2023, 37, e6966. [Google Scholar] [CrossRef]
- Taghdiri, M. Selective adsorption and photocatalytic degradation of dyes using polyoxometalate hybrid supported on magnetic activated carbon nanoparticles under sunlight, visible, and UV irradiation. Int. J. Photoenergy 2017, 2017, 8575096. [Google Scholar] [CrossRef]
- Shi, C.; Kang, N.; Wang, C.; Yu, K.; Lv, J.; Wang, C.; Zhou, B. An inorganic–organic hybrid nanomaterial with a core–shell structure constructed by using Mn–BTC and Ag₅[BW₁₂O₄₀] for supercapacitors and photocatalytic dye degradation. Nanoscale Adv. 2022, 4, 4358–4365. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; An, C.; Liu, H.; Wu, Q. Preparation of vanadium-substituted polyoxometalate doped carbon nitride hybrid materials POM/g-C₃N₄ and their photocatalytic oxidation performance. Mater. Lett. 2020, 262, 126954. [Google Scholar] [CrossRef]
- Diaz-Uribe, C.E.; Rodríguez, A.; Utria, D.; Vallejo, W.; Puello, E.; Zarate, X.; Schott, E. Photocatalytic degradation of methylene blue by the Anderson-type polyoxomolybdates/TiO₂ thin films. Polyhedron 2018, 149, 163–170. [Google Scholar] [CrossRef]
- Atta, S.; Haddad, S.; AlDamen, M. Different Polyoxometalate Structures Obtained from the Na₁₁H[H₂₋ₓBi₂W₂₀O₇₀(HWO₃)ₓ]·46H₂O (x = 1.4). Jordanian J. Eng. Chem. Ind. 2018, 1, 1–2. [Google Scholar]
- Laugier, J.; Bochu, B. LMGP-Suite of Programs for the Interpretation of X-Ray Experiments; ENSP/Laboratoire des Matériaux et du Génie Physique: Saint Martin d’Hères, France, 2000. [Google Scholar]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- El-Zaidia, E.F.M.; Ali, H.A.M.; Hamdalla, T.A.; Darwish, A.A.A.; Hanafy, T.A. Optical linearity and bandgap analysis of Erythrosine B doped in polyvinyl alcohol films. Opt. Mater. 2020, 100, 109661. [Google Scholar] [CrossRef]
- Qashou, S.I.; Rashad, M.; Mahmoud, A.Z.; Darwish, A.A.A. The promotion of Indeno [1, 2-b] flourene-6, 12 dione thin film to be changed into stable aromatic compound under the effect of annealing treatment. J. Mater. 2019, 162, 199–207. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Guo, R.; Shan, D.; Zhao, Y.; Linghu, X.; Shu, Y.; Wang, B. Synthesis of nano-sized Ag₃PW₁₂O₄₀/ZnO heterojunction as a photocatalyst for degradation of organic pollutants under simulated sunlight. Arab. J. Chem. 2022, 15, 103659. [Google Scholar] [CrossRef]
- Patil, K.; Pawar, R.; Talap, P. Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu₄NBr and urea. Phys. Chem. Chem. Phys. 2000, 2, 4313–4317. [Google Scholar] [CrossRef]
- Xiong, S.F.; Yin, Z.L.; Yuan, Z.F.; Yan, W.B.; Yang, W.Y.; Liu, J.J.; Zhang, F. Dual-frequency (20/40 kHz) ultrasonic assisted photocatalysis for degradation of methylene blue effluent: Synergistic effect and kinetic study. Ultrason. Sonochem 2012, 19, 756–761. [Google Scholar] [CrossRef]
- Mebed, A.M.; Alshammari, K.; Ezzeldien, M.; Al-Ghamdi, S.A.; Abd-Elnaiem, A.M.; Abd El-Aal, M.; Hamad, D. Enhancement of the photodegradation performance towards methylene blue and rhodamine B using AgₓSn₁₋ₓO₂ nanocomposites. J. Alloys Compd. 2024, 1009, 176977. [Google Scholar] [CrossRef]
- Li, F.R.; Ji, T.; Chen, W.L. A tri-vanadium-capped Keggin phosphomolybdate: Synthesis, characterization, photocatalytic and bifunctional electrocatalytic properties. Tungsten 2022, 4, 99–108. [Google Scholar] [CrossRef]
- Abdul Rahman, I.; Ayob, M.T.M.; Radiman, S. Enhanced photocatalytic performance of NiO-decorated ZnO nanowhiskers for methylene blue degradation. J. Nanotechnol. 2014, 2014, 212694. [Google Scholar] [CrossRef]
- Chen, M.L.; Cho, K.Y.; Oh, W.C. Synthesis and photocatalytic behaviors of Cr₂O₃–CNT/TiO₂ composite materials under visible light. J. Mater. Sci. 2010, 45, 6611–6616. [Google Scholar] [CrossRef]
- Azmina, M.S.; Md Nor, R.; Rafaie, H.A.; Razak, N.S.A.; Sani, S.F.A.; Osman, Z. Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Appl. Nanoscience 2017, 7, 885–892. [Google Scholar] [CrossRef]
- Sanguino, A.; Diaz-Uribe, C.; Duran, F.; Vallejo, W.; Guzman, L.; Ruiz, D.; Puello, E.; Quiñones, C.; Schott, E.; Zarate, X. Photocatalytic degradation of methylene blue under visible light using TiO₂ thin films impregnated with porphyrin and Anderson-type polyoxometalates (Cu and Zn). Catalysts 2022, 12, 1169. [Google Scholar] [CrossRef]
- Chang, S.K.; Abbasi, Z.; Khushbakht, F.; Ullah, I.; Rehman, F.U.; Hafeez, M. Rapid pH-dependent photocatalytic degradation of methylene blue by CdS nanorods synthesized through hydrothermal process. Arab. J. Chem. 2024, 17, 105422. [Google Scholar] [CrossRef]
Condition | Range | Optimized Condition |
---|---|---|
Amount of POM precursor | 0.5–2 g | 1.49 g |
pH | 4–7 | 6 |
Temperature | 60–90 °C | 80 °C |
Reaction time | 1–2 h | 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani-Atta, S.A.; Darwish, A.A.A.; Shwashreh, L.; Alotaibi, F.A.; Al-Tweher, J.N.; Al-Aoh, H.A.; El-Zaidia, E.F.M. Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Processes 2024, 12, 2769. https://doi.org/10.3390/pr12122769
Bani-Atta SA, Darwish AAA, Shwashreh L, Alotaibi FA, Al-Tweher JN, Al-Aoh HA, El-Zaidia EFM. Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Processes. 2024; 12(12):2769. https://doi.org/10.3390/pr12122769
Chicago/Turabian StyleBani-Atta, Suhair A., A. A. A. Darwish, Leena Shwashreh, Fatimah A. Alotaibi, Jozaa N. Al-Tweher, Hatem A. Al-Aoh, and E. F. M. El-Zaidia. 2024. "Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation" Processes 12, no. 12: 2769. https://doi.org/10.3390/pr12122769
APA StyleBani-Atta, S. A., Darwish, A. A. A., Shwashreh, L., Alotaibi, F. A., Al-Tweher, J. N., Al-Aoh, H. A., & El-Zaidia, E. F. M. (2024). Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Processes, 12(12), 2769. https://doi.org/10.3390/pr12122769