The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid
Abstract
1. Introduction
2. Materials and Methods
2.1. Non-Newtonian Fluid and Particles
2.2. Rheological Measurement
2.3. Experimental Set-Up
3. Results and Discussion
3.1. Rheology of Fluid
3.2. Analysis of Fluids-Free Surface Deformation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schürch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Hof, V.I.; Heyder, J.; Gehr, P. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environ. Health Perspect. 2005, 113, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Geiser, M.; Kreyling, W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010, 7, 2. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. Translocation of ultrafine insoludle iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health Part A 2002, 65, 1513–1530. [Google Scholar] [CrossRef]
- Semmler, M.; Seitz, J.; Erbe, F.; Mayer, P.; Heyder, J.; Oberdörster, G.; Kreyling, W.G. Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles from the Rat Lung, Including Transient Translocation into Secondary Organs. Inhal. Toxicol. 2004, 16, 453–459. [Google Scholar] [CrossRef]
- Semmler-Behnke, M.; Takenaka, S.; Fertsch, S.; Wenk, A.; Seitz, J.; Mayer, P.; Oberdörster, G.; Kreyling, W.G. Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium. Environ. Health Perspect. 2007, 115, 728–733. [Google Scholar] [CrossRef]
- Yang, W.; Peters, J.I.; Williams, R.O., III. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Penconek, A.; Michalczuk, U.; Sienkiewicz, A.; Moskal, A. The effect of desert dust particles on rheological properties of saliva and mucus. Environ. Sci. Pollut. Res. 2019, 26, 12150–12157. [Google Scholar] [CrossRef] [PubMed]
- Penconek, A.; Michalczuk, U.; Moskal, A. The Effect of Airborne Particles on Human Body Fluids. In Practical Aspects of Chemical Engineering; Ochowiak, M., Woziwodzki, S., Mitkowski, P.T., Doligalski, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 305–313. [Google Scholar] [CrossRef]
- Przekop, R.; Michalczuk, U.; Penconek, A.; Moskal, A. Effect of Microplastic Particles on the Rheological Properties of Human Saliva and Mucus. Int. J. Environ. Res. Public Health 2023, 20, 7037. [Google Scholar] [CrossRef]
- Friedlander, S.; Lipton-Lifschitz, A. Localized Instabilities in Fluids. Handb. Math. Fluid Dyn. 2003, 2, 289–354. [Google Scholar]
- Zhou, M.; Zou, J. A dynamical overview of droplets in the transmission of respiratory infectious diseases. Phys. Fluids 2021, 33, 031301. [Google Scholar] [CrossRef]
- Kull, H.J. Theory of the Rayleigh-Taylor instability. Phys. Rep. 1991, 206, 197–325. [Google Scholar] [CrossRef]
- Vadivukkarasan, M. A note on the stability characteristics of the respiratory events. Eur. J. Mech. B Fluids 2021, 89, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Dhand, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Gralton, J.; Tovey, E.; McLaws, M.L.; Rawlinson, W.D. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 2011, 62, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hersen, G.; Moularat, S.; Robine, E.; Géhin, E.; Corbet, S.; Vabret, A.; Freymuth, F. Impact of Health on Particle Size of Exhaled Respiratory Aerosols: Case-control Study. Clean 2008, 36, 572–577. [Google Scholar] [CrossRef]
- Edwards, D.A.; Man, J.C.; Brand, P.; Katstra, J.P.; Sommerer, K.; Stone, H.A.; Nardell, E.; Scheuch, G. Inhaling to mitigate exhaled bioaerosols. Proc. Natl. Acad. Sci. USA 2004, 101, 17383–17388. [Google Scholar] [CrossRef]
- Chideme, N.; de Vaal, P. Effect of Liquid Viscosity and Surface Tension on the Spray Droplet Size and the Measurement Thereof. J. Appl. Fluid Mech. 2024, 17, 2652–2672. [Google Scholar]
- Penconek, A.; Moskal, A. Deposition of diesel exhaust particles from various fuels in a cast of human respiratory system under two breathing patterns. J. Aerosol Sci. 2013, 63, 48–59. [Google Scholar] [CrossRef]
- Clarke, S.W.; Pavia, D. Lung mucus production and Mucociliary clearance: Methods of assessment. Br. J. Clin. Pharmac. 1980, 9, 537–546. [Google Scholar] [CrossRef]
- Penconek, A.; Moskal, A. The influence of pH and concentration of mucins on diesel exhaust particles (DEPs) transport through artificial mucus. J. Aero. Sci. 2016, 102, 83–95. [Google Scholar] [CrossRef]
- Michalczuk, U.; Przekop, R.; Moskal, A. The effect of selected nanoparticles on rheological properties of human blood. Bull. Pol. Acad. Sciences. Tech. Sci. 2022, 70, 140437. [Google Scholar] [CrossRef]
- Singh, T. Generation of microplastics from the opening and closing of disposable plastic water bottles. J. Water Health 2021, 19, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Lin, C.H.; Chen, Q. Flow dynamics and characterization of a cough: Flow dynamics and characterization of a cough. Indoor Air 2009, 19, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572. [Google Scholar] [CrossRef]
- Lai, S.K.; Wang, Y.Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef]
- Hattori, M.; Majima, Y.; Ukai, K.; Sakakura, Y. Effects of Nasal Allergen Challenge on Dynamic Viscoelasticity of Nasal Mucus. Ann. Otol. Rhinol. Laryngol. 1993, 102, 314–317. [Google Scholar] [CrossRef]
- Dziubiński, M.; Kiljański, T.; Sęk, J. Podstawy Teoretyczne i Metody Pomiarowe Reologii; Łódź, Monografie Politechniki Łódzkiej: Łódź, Poland, 2014. [Google Scholar]
- Stapper, E.; Samuelsen, E.G. An experimental study of the breakup of a two-dimensional liquid sheet in the presence of co-flow air shear. AIAA 1992, 1990, 90–22730. [Google Scholar]
- Prabhakar, A.K.; Potroz, M.G.; Tan, E.L.; Jung, H.; Park, J.H.; Cho, N.J. Macromolecular Microencapsulation Using Pine Pollen: Loading Optimization and Con-trolled Release with Natural Materials. ACS Appl. Mater. Interfaces 2018, 10, 28428–28439. [Google Scholar] [CrossRef] [PubMed]
- Rissler, J.; Swietlicki, E.; Bengtsson, A.; Boman, C.; Pagels, J.; Sandström, T.; Blomberg, A.; Löndahl, J. Experimental determination of deposition of diesel exhaust particles in the human respi-rators. J. Aerosol. Sci. 2012, 48, 18–33. [Google Scholar] [CrossRef]
- Agarwal, M.; King, M.; Shukla, A.B. Mucus gel transport in a simulated cough, ma-chine–effects of longitudinal grooves representing spacings between arrays of cilia. Biorheology 1994, 31, 11–19. [Google Scholar]
- Tomiewicz, R.P.; Biviji, A.; King, M. Effects of oscillating air-flow on the rheological properties and clearability of mucus gel simulants. Biorheology 1994, 31, 511–520. [Google Scholar]
- Rogers, D.F.; Lethem, M. Airway Mucus: Basic Mechanisms and Clinical Perspectives; Springer: Basel, Switzerland; Birkhăuser: Boston, MA, USA; Berlin, Germany, 1997. [Google Scholar]
Number of Instabilities | ||
---|---|---|
Mean | SD | |
CMC 3.5% | 5.00 | 0.60 |
+AFD | 4.44 | 0.53 |
+DEP | 6.50 | 0.76 |
+PiPo | 4.70 | 0.67 |
+PE | 5.60 | 0.52 |
CMC 4.0% | 6.17 | 0.55 |
+AFD | 5.22 | 0.67 |
+DEP | 6.44 | 0.53 |
+PiPo | 5.56 | 0.73 |
+PE | 6.20 | 1.03 |
CMC 4.5% | 6.60 | 0.70 |
+AFD | 6.00 | 0.93 |
+DEP | 7.30 | 0.67 |
+PiPo | 6.00 | 0.76 |
+PE | 6.80 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penconek, A.; Michalczuk, U.; Magnuska, M.; Moskal, A. The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid. Processes 2024, 12, 2765. https://doi.org/10.3390/pr12122765
Penconek A, Michalczuk U, Magnuska M, Moskal A. The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid. Processes. 2024; 12(12):2765. https://doi.org/10.3390/pr12122765
Chicago/Turabian StylePenconek, Agata, Urszula Michalczuk, Małgorzata Magnuska, and Arkadiusz Moskal. 2024. "The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid" Processes 12, no. 12: 2765. https://doi.org/10.3390/pr12122765
APA StylePenconek, A., Michalczuk, U., Magnuska, M., & Moskal, A. (2024). The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid. Processes, 12(12), 2765. https://doi.org/10.3390/pr12122765