Highly Efficient and Environmentally Friendly Walnut Shell Carbon for the Removal of Ciprofloxacin, Diclofenac, and Sulfamethoxazole from Aqueous Solutions and Real Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Preparation of WSAC
2.3. Characterization of WSAC
2.4. Adsorption of SMX, CIP, and DC onto WSAC
3. Results
3.1. WSAC Characterization
3.2. Optimization of Adsorption of SMX, CIP, and DC onto WSAC
3.3. Adsorption Equilibriums of SMX, CIP, and DC onto WSAC
3.4. Adsorption Kinetics of SMX, CIP, and DC onto WSAC
3.5. Adsorption Thermodynamics of SMX, CIP, and DC onto WSAC
3.6. Removal of SMX, CIP, and DC from Wastewater Samples
3.7. Desorption and Reusability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, K.; Anbumani, S. Ecotoxicological effects of organic micro-pollutants on the environment. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–501. [Google Scholar] [CrossRef]
- Chakraborty, P.; Singh, S.D.; Gorai, I.; Singh, D.; Rahman, W.U.; Halder, G. Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J. Water Process Eng. 2020, 33, 101022. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhou, L.; Liu, Z.; Heng, J.Y.; Chen, W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep. Purif. Technol. 2020, 253, 117536. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010, 29, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Ameen, M.; Lima, E.C. Removal of micropollutants from municipal wastewater using different types of activated carbons. J. Environ. Manag. 2021, 278, 111302. [Google Scholar] [CrossRef]
- Bizi, M. Sulfamethoxazole removal from drinking water by activated carbon: Kinetics and diffusion process. Molecules 2020, 25, 4656. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, S.; Asadipour, A.; Pournamdari, M.; Behnam, B.; Rahimi, H.R.; Dolatabadi, M. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Saf. Environ. 2017, 109, 538–547. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Wang, J. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J. Environ. Manag. 2018, 217, 240–246. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite. J. Hazard. Mater. 2020, 382, 121070. [Google Scholar] [CrossRef]
- Martínez-Sánchez, C.; Robles, I.; Godínez, L.A. Review of recent developments in electrochemical advanced oxidation processes: Application to remove dyes; pharmaceuticals; and pesticides. Int. J. Environ. Sci. Technol. 2022, 19, 12611–12678. [Google Scholar] [CrossRef]
- Kamrani, M.; Akbari, A. Chitosan-modified acrylic nanofiltration membrane for efficient removal of pharmaceutical compounds. J. Environ. Chem. Eng. 2018, 6, 583–587. [Google Scholar] [CrossRef]
- Gutierrez, M.; Pavlović, D.M.; Stipaničev, D.; Repec, S.; Avolio, F.; Zanella, M.; Verlicchi, P. A thorough analysis of the occurrence; removal and environmental risks of organic micropollutants in a full-scale hybrid membrane bioreactor fed by hospital wastewater. Sci. Total Environ. 2024, 914, 169848. [Google Scholar] [CrossRef] [PubMed]
- Kurade, M.B.; Mustafa, G.; Zahid, M.T.; Awasthi, M.K.; Chakankar, M.; Pollmann, K.; Khan, M.A.; Park, Y.K.; Chang, S.W.; Chung, W.; et al. Integrated phycoremediation and ultrasonic-irradiation treatment (iPUT) for the enhanced removal of pharmaceutical contaminants in wastewater. Chem. Eng. J. 2023, 455, 140884. [Google Scholar] [CrossRef]
- Suriyanon, N.; Permrungruang, J.; Kaosaiphun, J.; Wongrueng, A.; Ngamcharussrivichai, C.; Punyapalakul, P. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere 2015, 136, 222–231. [Google Scholar] [CrossRef]
- Spilsbury, F.; Kisielius, V.; Bester, K.; Backhaus, T. Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. Sci. Total Environ. 2024, 906, 167440. [Google Scholar] [CrossRef] [PubMed]
- Subaihi, A.; Shahat, A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J. Mol. Liq. 2023, 378, 121615. [Google Scholar] [CrossRef]
- Antonelli, R.; Malpass, G.R.P.; Teixeira, A.C.S.C. Adsorption and in-situ electrochemical regeneration in a clay-packed continuous reactor for the removal of the antibiotic sulfamethoxazole. Sep. Purif. Technol. 2024, 330, 125290. [Google Scholar] [CrossRef]
- Darvishi, P.; Mousavi, S.A.; Mahmoudi, A.; Nayeri, D. A comprehensive review on the removal of antibiotics from water and wastewater using carbon nanotubes: Synthesis, performance, and future challenges. Environ. Sci.-Wat Res. 2023, 9, 11–37. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Koklu, R.; Imamoglu, M. Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride. Membr. Water Treat. 2022, 13, 129–137. [Google Scholar] [CrossRef]
- Özer, Ç.; İmamoğlu, M. Removal of ciprofloxacin from aqueous solutions by pumpkin peel biochar prepared using phosphoric acid. Biomass Convers. Biorefinery 2024, 14, 6521–6531. [Google Scholar] [CrossRef]
- Ozturk, N.; Yazar, M.; Gundogdu, A.; Duran, C.; Senturk, H.B.; Soylak, M. Application of cherry laurel seeds activated carbon as a new adsorbent for Cr (VI) removal. Membr. Water Treat. 2021, 12, 11–21. [Google Scholar] [CrossRef]
- Siraj, K.; Aballa, J.S.; Danish, M.; Ahmad, T.; Khan, M.M.; Majeed, S.; Adane, B. The effect of microwave and muffle furnace-assisted heating on the surface characteristics of teff husk activated carbons: Thermodynamic; isotherm; and kinetics study of Pb removal. Diam. Relat. Mater. 2024, 143, 110912. [Google Scholar] [CrossRef]
- Muniyandi, M.; Govindaraj, P. Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Mater. Today-Proc. 2021, 47, 299–311. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Si, Y. Polydopamine functionalized superhydrophilic coconut shells biomass carbon for selective cationic dye methylene blue adsorption. Mater. Chem. Phys. 2022, 279, 125767. [Google Scholar] [CrossRef]
- Albatrni, H.; Abou Elezz, A.; Elkhatat, A.; Qiblawey, H.; Almomani, F. A green route to the synthesis of highly porous activated carbon from walnut shells for mercury removal. J. Water Process Eng. 2024, 58, 104802. [Google Scholar] [CrossRef]
- Dovi, E.; Aryee, A.A.; Kani, A.N.; Mpatani, F.M.; Li, J.; Qu, L.; Han, R. High-capacity amino-functionalized walnut shell for efficient removal of toxic hexavalent chromium ions in batch and column mode. J. Environ. Chem. Eng. 2022, 10, 107292. [Google Scholar] [CrossRef]
- Imamoglu, M.; Tekir, O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 2008, 228, 108–113. [Google Scholar] [CrossRef]
- Duran, C.; Ozdes, D.; Gundogdu, A.; Imamoglu, M.; Senturk, H.B. Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium. Anal. Chim. Acta 2011, 688, 75–83. [Google Scholar] [CrossRef]
- Li, X.; Tian, H.; Yan, S.; Shi, H.; Wu, J.; Sun, Y.; Xing, Y.; Bai, H.; Zhang, H. Micropores enriched ultra-high specific surface area activated carbon derived from waste peanut shells boosting performance of hydrogen storage. Int. J. Hydrogen Energy 2024, 50, 324–336. [Google Scholar] [CrossRef]
- Olowonyo, I.A.; Salam, K.K.; Aremu, M.O.; Lateef, A. Synthesis, characterization; and adsorptive performance of titanium dioxide nanoparticles modified groundnut shell activated carbon on ibuprofen removal from pharmaceutical wastewater. Waste Manag. Bull. 2024, 1, 217–233. [Google Scholar] [CrossRef]
- Jayalakshmi, R.; Anitha, P.; Sudha, R.; Priya, P. Methylene blue and Methyl orange removal from wastewater by magnetic adsorbent based on activated carbon synthesised from watermelon shell. Desalin Water Treat. 2024, 317, 100040. [Google Scholar] [CrossRef]
- Güvenç, İ.; Kazankaya, A. Türkiye’de ceviz üretimi; dış ticareti ve rekabet gücü. Yuz. Yıl Univ. J. Agric. Sci. 2019, 29, 418–424. [Google Scholar] [CrossRef]
- TEPGE, T.R.; Ministry of Agriculture and Forestry; Agricultural Economics and Policy Development Institute. Directorate Agricultural Products Markets Report. 2021. Available online: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2021-Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/Ceviz;%20Ocak-2021;tar%C4%B1m%20%C3%BCr%C3%BCnleri%20piyasa%20Raporu.pdf (accessed on 25 April 2024).
- Uzun, B.B.; Yaman, E. Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J. Energy Inst. 2017, 90, 825–837. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, Z.; Liu, P.; Li, Q.; Yang, R.; Yang, X. Competitive adsorption of naphthalene and phenanthrene on walnut shell based activated carbon and the verification via theoretical calculation. RSC Adv. 2020, 10, 10703–10714. [Google Scholar] [CrossRef]
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M.S.; Oliveira, M.L.S.; Seliem, M.K.; Dotto, G.L.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments; characterization and physical interpretations. Chem. Eng. J. 2020, 388, 124263. [Google Scholar] [CrossRef]
- Bayat, M.; Alighardashi, A.; Sadeghasadi, A. Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environ. Technol. Innov. 2018, 12, 148–159. [Google Scholar] [CrossRef]
- Georgieva, V.G.; Gonsalvesh, L.; Tavlieva, M.P. Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells. J. Mol. Liq. 2020, 312, 112788. [Google Scholar] [CrossRef]
- Geng, X.; Lv, S.; Yang, J.; Cui, S.; Zhao, Z. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics. J. Environ. Manag. 2021, 280, 111749. [Google Scholar] [CrossRef]
- Yazid, H.; El Mersly, L.; El Kassimi, A.; El Ayouchia, H.B.; El Himri, M.; Rafqah, S.; El Haddad, M. Optimization Study of Pharmaceuticals Pollutants Adsorption onto Large Surface Area Walnut Shells Activated Carbon: Experimental Design, Mechanism and DFT Calculations. 2023. Available online: https://assets-eu.researchsquare.com/files/rs-2386768/v1_covered.pdf?c=1675227716 (accessed on 1 April 2023).
- Teixeira, S.; Delerue-Matos, C.; Santos, L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon. Sci. Total Environ. 2019, 646, 168–176. [Google Scholar] [CrossRef]
- Yang, L.; Yungang, W.; Tao, L.; Li, Z.; Yanyuan, B.; Haoran, X. High-performance sorbents from ionic liquid activated walnut shell carbon: An investigation of adsorption and regeneration. RSC Adv. 2023, 13, 22744–22757. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef]
- Tünay, S.; Köklü, R.; Imamoğlu, M. Removal of diclofenac, ciprofloxacin and sulfamethoxazole from wastewater using granular activated carbon from hazelnut shell: Isotherm, kinetic and thermodynamic studies. Desalin Water Treat. 2022, 277, 155–168. [Google Scholar] [CrossRef]
- Ozer, C.; Imamoglu, M.; Turhan, Y.; Boysan, F. Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicol. Environ. Chem. 2012, 94, 1283–1293. [Google Scholar] [CrossRef]
- ASTM D4607-94; Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM International: West Conshohocken, PA, USA, 2006.
- Liu, W.J.; Zeng, F.X.; Jiang, H.; Zhang, X.S. Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol. 2011, 102, 8247–8252. [Google Scholar] [CrossRef]
- Sarıcı Özdemir, Ç. Obtaining high surface area activated carbon from various polymeric based wastes, characterization and application areas. Ph.D. Thesis, İnönü University, Malatya, Türkiye, 2008. [Google Scholar]
- Imamoglu, M.; Yıldız, H.; Altundag, H.; Turhan, Y. Efficient removal of Cd (II) from aqueous solution by dehydrated hazelnut husk carbon. J. Disper. Sci. 2015, 36, 284–290. [Google Scholar] [CrossRef]
- Li, T.; Han, X.; Liang, C.; Shohag, M.J.I.; Yang, X. Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag. Environ. Technol. 2015, 36, 245–253. [Google Scholar] [CrossRef]
- Schröder, E.; Thomauske, K.; Weber, C.; Hornung, A.; Tumiatti, V. Experiments on the generation of activated carbon from biomass. J. Anal. Appl. Pyrolysis 2007, 79, 106–111. [Google Scholar] [CrossRef]
- Jawad, A.H.; Bardhan, M.; Islam, M.A.; Islam, M.A.; Syed-Hassan, S.S.A.; Surip, S.N.; Alothman, Z.A.; Khan, M.R. Insights into the modeling; characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf. Interface 2020, 21, 100688. [Google Scholar] [CrossRef]
- Fito, J.; Tibebu, S.; Nkambule, T.T. Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chem. 2023, 17, 4. [Google Scholar] [CrossRef]
- Rodríguez-Mirasol, J.; Cordero, T.; Rodriguez, J.J. Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon 1993, 31, 87–95. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4. Result Mat. 2022, 15, 100304. [Google Scholar] [CrossRef]
- Shoaib, A.G.; El-Sikaily, A.; El Nemr, A.; Mohamed, A.E.D.A.; Hassan, A.A. Preparation and characterization of highly surface area activated carbons followed type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation. Biomass Convers. Biorefinery 2020, 12, 2253–2265. [Google Scholar] [CrossRef]
- Bal, D.; Özer, Ç.; İmamoğlu, M. Green and ecofriendly biochar preparation from pumpkin peel and its usage as an adsorbent for methylene blue removal from aqueous solutions. Wat Air Soil. Poll. 2021, 232, 1–16. [Google Scholar] [CrossRef]
- Yakout, S.M.; El-Deen, G.S. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab. J. C 2016, 9, S1155–S1162. [Google Scholar] [CrossRef]
- Brewer, C.E. Biochar Characterization and Engineering; Iowa State University: Ames, IA, USA, 2012. [Google Scholar]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Oussalah, C.; Kaouah, F.; Boumaza, S.; Trari, M. Highly efficient removal of the bisphenol A from aqueous solution by activated carbon derived from cores of nuts of Sapindus mukorossi. Biomass Convers. Biorefinery 2023, 14, 18869–18885. [Google Scholar] [CrossRef]
- Machado Garcia, R.; Carleer, R.; Arada Pérez, M.; Gryglewicz, G.; Maggen, J.; Haeldermans, T.; Yperman, J. Adsorption of Cibacron Yellow F-4G dye onto activated carbons obtained from peanut hull and rice husk: Kinetics and equilibrium studies. Biomass Convers. Biorefinery 2022, 12, 323–339. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Grmasha, R.A.; Meiczinger, M.; Al-Juboori, R.A.; Somogyi, V.; Hashim, K.S. A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. Materials 2024, 17, 1032. [Google Scholar] [CrossRef]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Ozer, C.; Imamoglu, M. Adsorptive transfer of methylene blue from aqueous solutions to hazelnut husk carbon activated with potassium carbonate. Desal Water Treat. 2017, 94, 236–243. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases; with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FT-IR. Maderas-Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Kumar, D.S.; Kumar, P.S.; Rajendran, N.M.; Anbuganapathi, G. Compost maturity assessment using physicochemical; solid-state spectroscopy; and plant bioassay analysis. J. Agr. Food Chem. 2013, 61, 11326–11331. [Google Scholar] [CrossRef]
- Ogungbenro, A.E.; Quang, D.V.; Al-Ali, K.A.; Vega, L.F.; Abu-Zahra, M.R. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J. Environ. Chem. Eng. 2020, 8, 104257. [Google Scholar] [CrossRef]
- Bouchelta, C.; Medjram, M.S.; Bertrand, O.; Bellat, J.P. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 2008, 82, 70–77. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Loh, M.M.; Aziz, J.A. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes Pigment. 2007, 75, 263–272. [Google Scholar] [CrossRef]
- Saleh, M.E.; El-Refaey, A.A.; Mahmoud, A.H. Effectiveness of sunflower seed husk biochar for removing copper ions from wastewater: A comparative study. Soil. Water Res. 2016, 11, 53–63. [Google Scholar] [CrossRef]
- Lv, P.; Perre, P.; Perré, G.A. TGA-FT-IR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations. Bioresources 2015, 10, 4239–4251. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Shokoofehpoor, F.; Mohammadi, A. Synthesis and characterization of γ-CD-modified TiO2 nanoparticles and its adsorption performance for different types of organic dyes. J. Chem. Eng. Data 2018, 64, 135–149. [Google Scholar] [CrossRef]
- Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from waste water: A comparative study. Indian. J. Environ. Health 2002, 44, 78–87. [Google Scholar] [CrossRef]
- Sun, L.; Wan, S.; Luo, W. Biochars prepared from anaerobic digestion residue; palm bark; and eucalyptus for adsorption of cationic methylene blue dye: Characterization; equilibrium; and kinetic studies. Bioresour. Technol. 2013, 140, 406–413. [Google Scholar] [CrossRef]
- Gündoğdu, A.; Şentürk, H.B.; Duran, C.; İmamoğlu, M.; Soylak, M. A new low-cost activated carbon produced from tea-industry waste for removal of Cu(II) ions from aqueous solution: Equilibrium; kinetic and thermodynamic evaluation. Karadeniz Chem. Sci. Technol. 2018, 2, 1–10. [Google Scholar]
- Usanmaz, S.; Özer, G.; İmamoğlu, M. Removal of Cu(II), Ni(II) and Co(II) ions from aqueous solutions by hazelnut husks carbon activated with phosphoric acid. Desalin Water Treat. 2021, 227, 300–308. [Google Scholar] [CrossRef]
- Pamphile, N.; Xuejiao, L.; Guangwei, Y.; Yin, W. Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption. J. Hazard. Mater. 2019, 368, 602–612. [Google Scholar] [CrossRef]
- Kong, J.; Zheng, Y.; Xiao, L.; Dai, B.; Meng, Y.; Ma, Z.; Wang, J.; Huang, X. Synthesis and comparison studies of activated carbons based folium cycas for ciprofloxacin adsorption. Colloid. Surf. A 2020, 606, 125519. [Google Scholar] [CrossRef]
- Hao, D.; Chen, Y.; Zhang, Y.; You, N. Nanocomposites of zero-valent iron@ biochar derived from agricultural wastes for adsorptive removal of tetracyclines. Chemosphere 2021, 284, 131342. [Google Scholar] [CrossRef]
- Guellati, A.; Maachi, R.; Chaabane, T.; Darchen, A.; Danish, M. Aluminum dispersed bamboo activated carbon production for effective removal of Ciprofloxacin hydrochloride antibiotics: Optimization and mechanism study. J. Environ. Manag. 2022, 301, 113765. [Google Scholar] [CrossRef]
- El Naga, A.O.A.; El Saied, M.; Shaban, S.A.; El Kady, F.Y. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J. Mol. Liq. 2019, 285, 9–19. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Budianta, W.; Rivera, K.K.P.; Arazo, R.O. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J. Environ. Chem. Eng. 2017, 5, 1465–1474. [Google Scholar] [CrossRef]
- Tonucci, M.C.; Gurgel, L.V.A.; de Aquino, S.F. Activated carbons from agricultural byproducts (pine tree and coconut shell); coal; and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Ind. Crops Prod. 2015, 74, 111–121. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Ling, C.; Zhang, J.; Szerlag, K. Adsorption of ciprofloxacin on to bamboo charcoal: Effects of pH; salinity; cations; and phosphate. Environ. Prog. Sustain. 2017, 36, 1108–1115. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Seo, P.W.; Jhung, S.H. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Shirani, Z.; Song, H.; Bhatnagar, A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ. 2020, 745, 140789. [Google Scholar] [CrossRef] [PubMed]
- Penafiel, M.E.; Matesanz, J.M.; Vanegas, E.; Bermejo, D.; Mosteoö, R.; Ormad, M.P. Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci. Total Environ. 2021, 750, 141498. [Google Scholar] [CrossRef]
- Huynh, N.C.; Nguyen, T.T.T.; Nguyen, D.T.C.; Van Tran, T. Production of MgFe2O4/activated carbons derived from a harmful grass Cynodon dactylon and their utilization for ciprofloxacin removal. Chemosphere 2023, 343, 139891. [Google Scholar] [CrossRef]
- Minaei, S.; Benis, K.Z.; McPhedran, K.N.; Soltan, J. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole. Chem. Eng. Res. Des. 2023, 190, 407–420. [Google Scholar] [CrossRef]
- Bilgin, F.; Imamoglu, M. Effect of spacer length between N atoms of linear alkyl triamines on adsorption of anionic platinum (IV) ions. Desal Water Treat. 2024, 317, 100229. [Google Scholar] [CrossRef]
- Bernardo, M.; Rodrigues, S.; Lapa, N.; Matos, I.; Lemos, F.; Batista, M.K.S.; Carvalho, A.P.; Fonseca, I. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 2016, 13, 1989–2000. [Google Scholar] [CrossRef]
- Antunes, M.; Esteves, V.I.; Guégan, R.; Crespo, J.S.; Fernandes, A.N.; Giovanela, M. Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem. Eng. J. 2012, 192, 114–121. [Google Scholar] [CrossRef]
- Viotti, P.V.; Moreira, W.M.; dos Santos, O.A.A.; Bergamasco, R.; Vieira, A.M.S.; Vieira, M.F. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism; kinetic and equilibrium study. J. Clean. Prod. 2019, 219, 809–817. [Google Scholar] [CrossRef]
- Kumar, A.; Patra, C.; Kumar, S.; Narayanasamy, S. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ. Res. 2022, 206, 112604. [Google Scholar] [CrossRef] [PubMed]
- Karaçetin, G.; Sivrikaya, S.; Imamoğlu, M. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. J. Anal. Appl. Pyrolysis 2014, 110, 270–276. [Google Scholar] [CrossRef]
- Lung, I.; Soran, M.L.; Stegarescu, A.; Opris, O.; Gutoiu, S.; Leostean, C.; Lazar, M.D.; Kacso, I.; Silipas, T.-D.; Porav, A.S. Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J. Hazard. Mater. 2021, 403, 123528. [Google Scholar] [CrossRef] [PubMed]
- Reguyal, F.; Sarmah, A.K.; Gao, W. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J. Hazard. Mater. 2017, 321, 868–878. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Grmasha, R.A.; Meiczinger, M.; Al-Juboori, R.A.; Somogyi, V.; Stenger-Kovács, C.; Hashim, K.S. A sustainable and highly efficient fossil-free carbon from olive stones for emerging contaminants removal from different water matrices. Chemosphere 2024, 351, 141189. [Google Scholar] [CrossRef]
Factors | Conditions | Value |
---|---|---|
Elemental analysis (%) | WSAC | |
C | 71.6 | |
H | 1.6 | |
N | 1.1 | |
O * C/H | 25.8 3.7 | |
Surface functional groups (mmol g−1) | ||
Lactonic | 0.22 | |
Phenolic | 0.66 | |
Carboxylic | 0.34 | |
Total acidic groups | 1.21 | |
Proximate analysis (%) | ||
Moisture | 150 °C. 3 h | 10.4 |
Ash | 650 ± 25 °C. 6 h | 11.9 |
Volatile matter | 950 ± 25 °C. 7 min. | 17.8 |
Fixed carbon * | 70.3 | |
Water solubility | 1.42 | |
pHpzc | 4.26 | |
Iodine number (mg g−1) | 602.7 | |
BET-specific surface area (m2 g−1) | 1428 |
Isotherm Model | Parameter | Adsorbate | ||
---|---|---|---|---|
DC | CIP | SMX | ||
Freundlich | KF (mg g−1) (mg L−1)1/n | 19.01 | 62.63 | 36.27 |
n | 3. 01 | 4.69 | 1.85 | |
r2 | 0.99 | 0.74 | 0.98 | |
Langmuir | qmax (mg g−1) | 135.1 | 185.2 | 476.2 |
KL (L mg−1) | 0.03 | 0.22 | 0.04 | |
r2 | 0.99 | 0.99 | 0.99 | |
Dubinin–Radushkevich | qm (mg g−1) | 89.07 | 168.12 | 277.82 |
β (m mol2 J−2) | 21 × 0−6 | 1 × 10−7 | 1 × 10−6 | |
r2 | 0.78 | 0.73 | 0.80 | |
Temkin | b | 20.75 | 19.79 | 92.6 |
KT | 1.07 | 49.78 | 1.57 | |
r2 | 0.96 | 0.90 | 0.95 |
Adsorbent | qmax (mg g−1) | Reference | ||
---|---|---|---|---|
DC | CIP | SMX | ||
Rice straw AC | 3.7 | [51] | ||
Cocoa pod husks AC | 5.5 | [85] | ||
Pine tree AC | 131 | [86] | ||
Bamboo AC | 36.0 | [87] | ||
Commercial AC | 487 | [88] | ||
Anthriscus sylvestris AC | 392.9 | [89] | ||
Sugarcane bagasse AC | 9.5 | [90] | ||
Cynodon dactylon AC | 211.7 | [91] | ||
Activated sludge biomass | 50.6 | [92] | ||
Hazelnut shell AC (HSAC) | 125 | 95.2 | 285.7 | [45] |
Walnut shell AC (WSAC) | 135.1 | 185.2 | 476.2 | This study |
Kinetic Model | Parameter | Adsorbate | ||
---|---|---|---|---|
DC | CIP | SMX | ||
qe exp (mg g−1) | 122.8 | 197.8 | 169.6 | |
Pseudo-first-order | ||||
k1 (dk−1) | 2.1 × 10−3 | 2.1 × 10−3 | 3.2 × 10−3 | |
qe,cal (mg g−1) | 99.0 | 133.9 | 66.7 | |
r2 | 0.99 | 0.98 | 0.93 | |
Pseudo-second-order | ||||
k2 (g mg−1 dk−1) | 6.5 × 10−5 | 6.5 × 10−5 | 2.4 × 10−4 | |
qe, cal (mg g−1) | 131.6 | 204.1 | 172.4 | |
r2 | 0.99 | 0.99 | 0.99 | |
Intraparticle diffusion | ||||
kid,1 (mg g−1 dk−1/2) | 3.93 | 7.63 | 11.87 | |
r2 | 0.95 | 0.99 | 0.90 | |
C1 (mg g−1) | 12.09 | 27.92 | 24.39 | |
kid,2 (mg g−1 dk−1/2) | 1.84 | 1.99 | 0.66 | |
r2 | 0.98 | 0.99 | 0.96 | |
C2 (mg g−1) | 52.59 | 121.03 | 146.38 |
Adsorbate | t (°C) | T (K) | Kd | ΔG (kj mol−1) | ΔH (kj mol−1) | ΔS (j mol−1 K−1) |
---|---|---|---|---|---|---|
25 | 298.15 | 8.43 | −5.29 | |||
SMX | 35 | 308.15 | 8.80 | −5.57 | 3.4 | 29.3 |
45 | 318.15 | 9.20 | −5.87 | |||
25 | 298.15 | 3.48 | −3.09 | |||
CIP | 35 | 308.15 | 5.60 | −4.41 | 58.7 | 206.4 |
45 | 318.15 | 15.53 | −7.26 | |||
25 | 298.15 | 1.54 | −1.07 | |||
DC | 35 | 308.15 | 1.66 | −1.30 | 7.6 | 29.0 |
45 | 318.15 | 1.87 | −1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunay, S.; Koklu, R.; Imamoglu, M. Highly Efficient and Environmentally Friendly Walnut Shell Carbon for the Removal of Ciprofloxacin, Diclofenac, and Sulfamethoxazole from Aqueous Solutions and Real Wastewater. Processes 2024, 12, 2766. https://doi.org/10.3390/pr12122766
Tunay S, Koklu R, Imamoglu M. Highly Efficient and Environmentally Friendly Walnut Shell Carbon for the Removal of Ciprofloxacin, Diclofenac, and Sulfamethoxazole from Aqueous Solutions and Real Wastewater. Processes. 2024; 12(12):2766. https://doi.org/10.3390/pr12122766
Chicago/Turabian StyleTunay, Seda, Rabia Koklu, and Mustafa Imamoglu. 2024. "Highly Efficient and Environmentally Friendly Walnut Shell Carbon for the Removal of Ciprofloxacin, Diclofenac, and Sulfamethoxazole from Aqueous Solutions and Real Wastewater" Processes 12, no. 12: 2766. https://doi.org/10.3390/pr12122766
APA StyleTunay, S., Koklu, R., & Imamoglu, M. (2024). Highly Efficient and Environmentally Friendly Walnut Shell Carbon for the Removal of Ciprofloxacin, Diclofenac, and Sulfamethoxazole from Aqueous Solutions and Real Wastewater. Processes, 12(12), 2766. https://doi.org/10.3390/pr12122766