Hybrid Brown-Bear and Hippopotamus Algorithms with Fractional Order Chaos Maps for Precise Solar PV Model Parameter Estimation
Abstract
1. Introduction
Reference | PV Module | Method | Year | Comments and Annotations |
---|---|---|---|---|
[56] | RTC France, PWP201 | WCA | 2017 | The main features are reduced user speedy convergence and adjustable parameters. |
[57] | RTC France, PWP201 | DE | 2018 | The efficiency of the scheme is evaluated by valuing the parameters of PV module of diverse manufactures |
[58] | RTC France, PWP201 | MLSHADE | 2020 | The MLSHADE algorithm can attain a greatly competitive performing contrasted with other state-of-the-art methods. |
[59] | PWP201, STE4/100 | PSOGWO | 2021 | The use of hybrid PSO and GWO based on investigational datasets of I-V characteristics. |
[60] | PWP201, KC200GT | ABC-LS | 2021 | The RMSE rates for the parameter estimation of SD, DD and MM of the ABC-LS scheme were with satisfactory accuracy. |
[61] | Adani ASB-7-355, Adani ASM-7-PERC-365, Tata TP280. | OBEO | 2021 | The present OBEO is an modernize process to generate the top solutions to discover superior search space. |
[62] | RTC France, STM6-40/36, STP6-120/36, CTJ30 | GSA | 2022 | The five parameters model offers the lowest RMSE value as contrasted to the procedures testified in the remaining literature. |
[63] | RTC France, PWP201. | RKO | 2022 | Robust and enhanced convergence quickness. |
[64] | RTC France, PWP201, ST40, SM55, STM6-40/36, STP6-120/36. | IQSODE | 2023 | Satisfactorily accurate PV parameters (SDM, DDM, and MM) are obtained using the suggested IQSODE approach. |
[65] | RTC France, PWP201. | HHO | 2023 | Performance accuracy and dominance in identifying the PV parameters |
[66] | STM6-40/36, KC200GT, PWP 201 | AHT | 2024 | The AHT’s implementation is calculated employing the datasheet offered by the manufacturer. |
[67] | RTC France, PWP201, STP6-120/36 | ICOA | 2024 | A numerical analysis between numerous firm metaheuristic approaches was directed to display the excellent ICOA performing. |
[68] | KC200GT, SM55 | SAELDE | 2024 | The parameters are computed by computing the derivative matrix corresponding to the nonlinear parameters. |
[69] | PWP201, STM6-40/36, STP6-120/36 | ESCA | 2024 | Elevated convergence level, low and stable finest fitness values. |
[70] | PWP201, STM6-40/36 | µAFCSO | 2024 | The examination functions were reflected in order to establish that the process was used to solve usual problems managed applying population. |
[71] | RTC France, PWP201 | MGO | 2024 | The suggested optimizer performs best in identifying parameters for both SD, DD, and MM. |
- The integration of HO algorithm operations and FC maps into BOA enhances global and local search balance, maintains variety, and enables adaptive parameter fine-tuning.
- The EBOA’s potency was thoroughly analyzed using benchmark functions.
- A comprehensive study demonstrated that the EBOA-with-NR technique outperformed other established metaheuristic methods in accurately predicting optimal PV parameters.
- Various PV module/cell scenarios were evaluated using various PV models, including SDM and DDM, to estimate parameters.
- Experimental results confirmed the effectiveness of the EBOA in PV parameter extraction through its accuracy, consistency, and convergence.
2. PV Models and Their Objective Functions
2.1. Single-Diode Model (SDM)
2.2. Double-Diode Model (DDM)
2.3. PV Module Model (MM)
2.4. Objective Function
3. Proposed EBOA
Algorithm 1. The pseudo code of the EBOA |
Start EBOA |
Involve: , , and variables limits Confirm: objective function is described 1: Initialize random bears group including FC maps based on Equation (32) 2: Form group of bears represented by population P in Equation (15) 3: Initialize best objective function = 1 and 4: while () do 5: Hippopotamuses phase exploration starts 6: for ( = 1: size (;1)) do 7: Compute the new location of the ith hippopotamus based on Equations (24) and (27) 8: Update the location of the ith hippopotamus using Equations (29) and (30) 9: Assess objective function . 10: if ( > )) then 11: = ; 12: = 13: end if 14: end for 15: Hippopotamuses phase exploration ends 16: Pedal scent marking activity commences 17: Choose the best and worst bears group. 18: ; 19: for ( = 1: size (;1)) do 20: % Starting of Characteristic gait while walking 21: if ( > 0 && ) then 22: Compute the updated value of via Equation (16) 23: % Starting of Careful stepping characteristic 24: else if ( && ) then 25: Compute the updated value of based on Equation (18) 26: % Starting of Twisting feet characteristic 27: else if ( && 1) then 28: Compute the updated value of via (22) 29: end if 30: end for 31: Choose most favorable bears group. 32: Behavior of pedal scent marking terminates 33: Behavior of sniffing begins 34: for ( = 1: size(;1)) do 35: Choose one random of bears group for 36: Compute the updated value of via (23) 37: end for 38: Choose better bears group 39: behavior of sniffing terminates 40: ; 41: end while 42: print and . |
End EBOA |
3.1. BOA: Mathematical Model
3.1.1. Group Formation
3.1.2. Pedal-Scent-Marking Behavior
Characteristic Gait While Walking
Twisting-Feet Characteristic
3.1.3. Sniffing Behavior
3.2. HO Exploration Phase
3.3. FC Maps
4. Results and Discussion on Benchmark Functions Evaluation
4.1. Results and Discussion on PV Cell/Modules
4.1.1. Simulation Results for RTC France PV Cell
4.1.2. Simulation Results for STP6-120/36
4.1.3. Simulation Results for Photowatt-PWP201 PV Module
4.1.4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Experimental Data | Estimated Current Data | Estimated Power Data | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | −0.2057 | 0.7640 | −0.1572 | 0.7640 | 1.9572 × 10−5 | 2.5618 × 10−5 | −0.1572 | 4.0260 × 10−6 | −2.5618 × 10−5 |
2 | −0.1291 | 0.7620 | −0.0984 | 0.7626 | 6.2910 × 10−4 | 8.2559 × 10−4 | −0.0985 | 8.1217 × 10−5 | −8.2559 × 10−4 |
3 | −0.0588 | 0.7605 | −0.0447 | 0.7614 | 8.5271 × 10−4 | 1.1212 × 10−3 | −0.0448 | 5.0139 × 10−5 | −1.1212 × 10−3 |
4 | 0.0057 | 0.7605 | 0.0043 | 0.7602 | 3.1944 × 10−4 | 4.2004 × 10−4 | 0.0043 | 1.8208 × 10−6 | 4.2004 × 10−4 |
5 | 0.0646 | 0.7600 | 0.0491 | 0.7591 | 8.9347 × 10−4 | 1.1756 × 10−3 | 0.0490 | 5.7718 × 10−5 | 1.1756 × 10−3 |
6 | 0.1185 | 0.7590 | 0.0899 | 0.7581 | 8.8771 × 10−4 | 1.1696 × 10−3 | 0.0898 | 1.0519 × 10−4 | 1.1696 × 10−3 |
7 | 0.1678 | 0.7570 | 0.1270 | 0.7572 | 1.7037 × 10−4 | 2.2505 × 10−4 | 0.1271 | 2.8587 × 10−5 | 2.2505 × 10−4 |
8 | 0.2132 | 0.7570 | 0.1614 | 0.7562 | 7.8389 × 10−4 | 1.0355 × 10−3 | 0.1612 | 1.6713 × 10−4 | 1.0355 × 10−3 |
9 | 0.2545 | 0.7555 | 0.1923 | 0.7551 | 3.6315 × 10−4 | 4.8068 × 10−4 | 0.1922 | 9.2423 × 10−5 | 4.8068 × 10−4 |
10 | 0.2924 | 0.7540 | 0.2205 | 0.7537 | 3.3344 × 10−4 | 4.4223 × 10−4 | 0.2204 | 9.7498 × 10−5 | 4.4223 × 10−4 |
11 | 0.3269 | 0.7505 | 0.2453 | 0.7513 | 8.2460 × 10−4 | 1.0987 × 10−3 | 0.2456 | 2.6956 × 10−4 | 1.0987 × 10−3 |
12 | 0.3585 | 0.7465 | 0.2676 | 0.7472 | 7.1706 × 10−4 | 9.6056 × 10−4 | 0.2679 | 2.5707 × 10−4 | 9.6056 × 10−4 |
13 | 0.3873 | 0.7385 | 0.2860 | 0.7399 | 1.4235 × 10−3 | 1.9275 × 10−3 | 0.2866 | 5.5132 × 10−4 | 1.9275 × 10−3 |
14 | 0.4137 | 0.7280 | 0.3012 | 0.7272 | 7.6294 × 10−4 | 1.0480 × 10−3 | 0.3009 | 3.1563 × 10−4 | 1.0480 × 10−3 |
15 | 0.4373 | 0.7065 | 0.3090 | 0.7069 | 3.7472 × 10−4 | 5.3040 × 10−4 | 0.3091 | 1.6387 × 10−4 | 5.3040 × 10−4 |
16 | 0.4590 | 0.6755 | 0.3101 | 0.6753 | 1.5431 × 10−4 | 2.2844 × 10−4 | 0.3100 | 7.0829 × 10−5 | 2.2844 × 10−4 |
17 | 0.4784 | 0.6320 | 0.3023 | 0.6311 | 9.4396 × 10−4 | 1.4936 × 10−3 | 0.3019 | 4.5159 × 10−4 | 1.4936 × 10−3 |
18 | 0.4960 | 0.5730 | 0.2842 | 0.5723 | 6.8964 × 10−4 | 1.2036 × 10−3 | 0.2839 | 3.4206 × 10−4 | 1.2036 × 10−3 |
19 | 0.5119 | 0.4990 | 0.2554 | 0.4997 | 6.8432 × 10−4 | 1.3714 × 10−3 | 0.2558 | 3.5030 × 10−4 | 1.3714 × 10−3 |
20 | 0.5265 | 0.4130 | 0.2174 | 0.4136 | 5.7303 × 10−4 | 1.3875 × 10−3 | 0.2177 | 3.0170 × 10−4 | 1.3875 × 10−3 |
21 | 0.5398 | 0.3165 | 0.1708 | 0.3172 | 6.5643 × 10−4 | 2.0740 × 10−3 | 0.1712 | 3.5434 × 10−4 | 2.0740 × 10−3 |
22 | 0.5521 | 0.2120 | 0.1170 | 0.2119 | 7.6362 × 10−5 | 3.6020 × 10−4 | 0.1170 | 4.2159 × 10−5 | 3.6020 × 10−4 |
23 | 0.5633 | 0.1035 | 0.0583 | 0.1025 | 9.9889 × 10−4 | 9.6512 × 10−3 | 0.0577 | 5.6268 × 10−4 | 9.6512 × 10−3 |
24 | 0.5736 | −0.0100 | −0.0057 | −0.0094 | 5.9296 × 10−4 | −5.9296 × 10−2 | −0.0054 | 3.4012 × 10−4 | −5.9296 × 10−2 |
25 | 0.5833 | −0.1230 | −0.0717 | −0.1244 | 1.3577 × 10−3 | −1.1038 × 10−2 | −0.0725 | 7.9195 × 10−4 | −1.1038 × 10−2 |
26 | 0.5900 | −0.2100 | −0.1239 | −0.2090 | 1.0409 × 10−3 | −4.9566 × 10−3 | −0.1233 | 6.1412 × 10−4 | −4.9566 × 10−3 |
1.7124 × 10−2 | 6.4650 × 10−3 | ||||||||
6.8215 × 10−4 |
Experimental Data | Estimated Current Data | Estimated Power Data | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 19.2100 | 0.0000 | 0.0000 | 0.0041 | 4.1211 × 10−3 | 1.0000 | 0.0792 | 7.9166 × 10−2 | 1.0000 |
2 | 17.6500 | 3.8300 | 67.5995 | 3.8285 | 1.5383 × 10−3 | 4.0164 × 10−4 | 67.5723 | 2.7151 × 10−2 | 4.0164 × 10−4 |
3 | 17.4100 | 4.2900 | 74.6889 | 4.2708 | 1.9165 × 10−2 | 4.4673 × 10−3 | 74.3552 | 3.3366 × 10−1 | 4.4673 × 10−3 |
4 | 17.2500 | 4.5600 | 78.6600 | 4.5438 | 1.6216 × 10−2 | 3.5561 × 10−3 | 78.3803 | 2.7972 × 10−1 | 3.5561 × 10−3 |
5 | 17.1000 | 4.7900 | 81.9090 | 4.7839 | 6.0722 × 10−3 | 1.2677 × 10−3 | 81.8052 | 1.0383 × 10−1 | 1.2677 × 10−3 |
6 | 16.9000 | 5.0700 | 85.6830 | 5.0809 | 1.0870 × 10−2 | 2.1440 × 10−3 | 85.8667 | 1.8370 × 10−1 | 2.1440 × 10−3 |
7 | 16.7600 | 5.2700 | 88.3252 | 5.2733 | 3.2870 × 10−3 | 6.2372 × 10−4 | 88.3803 | 5.5090 × 10−2 | 6.2372 × 10−4 |
8 | 16.3400 | 5.7500 | 93.9550 | 5.7780 | 2.7954 × 10−2 | 4.8615 × 10−3 | 94.4118 | 4.5677 × 10−1 | 4.8615 × 10−3 |
9 | 16.0800 | 6.0000 | 96.4800 | 6.0394 | 3.9432 × 10−2 | 6.5719 × 10−3 | 97.1141 | 6.3406 × 10−1 | 6.5719 × 10−3 |
10 | 15.7100 | 6.3600 | 99.9156 | 6.3514 | 8.5707 × 10−3 | 1.3476 × 10−3 | 99.7810 | 1.3465 × 10−1 | 1.3476 × 10−3 |
11 | 15.3900 | 6.5800 | 101.2662 | 6.5710 | 9.0357 × 10−3 | 1.3732 × 10−3 | 101.1271 | 1.3906 × 10−1 | 1.3732 × 10−3 |
12 | 14.9300 | 6.8300 | 101.9719 | 6.8179 | 1.2111 × 10−2 | 1.7733 × 10−3 | 101.7911 | 1.8082 × 10−1 | 1.7733 × 10−3 |
13 | 14.5800 | 6.9700 | 101.6226 | 6.9612 | 8.8201 × 10−3 | 1.2654 × 10−3 | 101.4940 | 1.2860 × 10−1 | 1.2654 × 10−3 |
14 | 14.1700 | 7.1000 | 100.6070 | 7.0903 | 9.6816 × 10−3 | 1.3636 × 10−3 | 100.4698 | 1.3719 × 10−1 | 1.3636 × 10−3 |
15 | 13.5900 | 7.2300 | 98.2557 | 7.2190 | 1.0997 × 10−2 | 1.5211 × 10−3 | 98.1062 | 1.4945 × 10−1 | 1.5211 × 10−3 |
16 | 13.1600 | 7.2900 | 95.9364 | 7.2847 | 5.3234 × 10−3 | 7.3023 × 10−4 | 95.8663 | 7.0055 × 10−2 | 7.3023 × 10−4 |
17 | 12.7400 | 7.3400 | 93.5116 | 7.3314 | 8.5863 × 10−3 | 1.1698 × 10−3 | 93.4022 | 1.0939 × 10−1 | 1.1698 × 10−3 |
18 | 12.3600 | 7.3700 | 91.0932 | 7.3627 | 7.2863 × 10−3 | 9.8865 × 10−4 | 91.0031 | 9.0059 × 10−2 | 9.8865 × 10−4 |
19 | 11.8100 | 7.3800 | 87.1578 | 7.3948 | 1.4765 × 10−2 | 2.0007 × 10−3 | 87.3322 | 1.7438 × 10−1 | 2.0007 × 10−3 |
20 | 11.1700 | 7.4100 | 82.7697 | 7.4187 | 8.7090 × 10−3 | 1.1753 × 10−3 | 82.8670 | 9.7279 × 10−2 | 1.1753 × 10−3 |
21 | 10.3200 | 7.4400 | 76.7808 | 7.4372 | 2.7852 × 10−3 | 3.7435 × 10−4 | 76.7521 | 2.8743 × 10−2 | 3.7435 × 10−4 |
22 | 9.7400 | 7.4200 | 72.2708 | 7.4448 | 2.4754 × 10−2 | 3.3361 × 10−3 | 72.5119 | 2.4110 × 10−1 | 3.3361 × 10−3 |
23 | 9.0600 | 7.4500 | 67.4970 | 7.4506 | 5.7674 × 10−4 | 7.7414 × 10−5 | 67.5022 | 5.2252 × 10−3 | 7.7414 × 10−5 |
24 | 0.0000 | 7.4800 | 0.0000 | 7.4715 | 8.4539 × 10−3 | 1.1302 × 10−3 | 0.0000 | 0.0000 × 10 | 0.0000 × 10 |
2.6911 × 10−1 | 3.8391 × 10 | ||||||||
1.1557 × 10−2 |
Experimental Data | Estimated Current Data | Estimated Power Data | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.1248 | 1.0315 | 0.1287 | 1.0297 | 1.7717 × 10−3 | 1.7176 × 10−3 | 0.1285 | 2.2111 × 10−4 | 1.7176 × 10−3 |
2 | 1.8093 | 1.0300 | 1.8636 | 1.0277 | 2.3360 × 10−3 | 2.2680 × 10−3 | 1.8594 | 4.2265 × 10−3 | 2.2680 × 10−3 |
3 | 3.3511 | 1.0260 | 3.4382 | 1.0257 | 2.7028 × 10−4 | 2.6343 × 10−4 | 3.4373 | 9.0573 × 10−4 | 2.6343 × 10−4 |
4 | 4.7622 | 1.0220 | 4.8670 | 1.0238 | 1.8395 × 10−3 | 1.7999 × 10−3 | 4.8757 | 8.7602 × 10−3 | 1.7999 × 10−3 |
5 | 6.0538 | 1.0180 | 6.1628 | 1.0218 | 3.8186 × 10−3 | 3.7510 × 10−3 | 6.1859 | 2.3117 × 10−2 | 3.7510 × 10−3 |
6 | 7.2364 | 1.0155 | 7.3486 | 1.0193 | 3.8230 × 10−3 | 3.7646 × 10−3 | 7.3762 | 2.7665 × 10−2 | 3.7646 × 10−3 |
7 | 8.3189 | 1.0140 | 8.4354 | 1.0157 | 1.7229 × 10−3 | 1.6991 × 10−3 | 8.4497 | 1.4333 × 10−2 | 1.6991 × 10−3 |
8 | 9.3097 | 1.0100 | 9.4028 | 1.0100 | 4.8964 × 10−5 | 4.8479 × 10−5 | 9.4023 | 4.5584 × 10−4 | 4.8479 × 10−5 |
9 | 10.2163 | 1.0035 | 10.2521 | 1.0004 | 3.1421 × 10−3 | 3.1312 × 10−3 | 10.2200 | 3.2101 × 10−2 | 3.1312 × 10−3 |
10 | 11.0449 | 0.9880 | 10.9124 | 0.9847 | 3.3371 × 10−3 | 3.3777 × 10−3 | 10.8755 | 3.6858 × 10−2 | 3.3777 × 10−3 |
11 | 11.8018 | 0.9630 | 11.3651 | 0.9601 | 2.9176 × 10−3 | 3.0297 × 10−3 | 11.3307 | 3.4433 × 10−2 | 3.0297 × 10−3 |
12 | 12.4929 | 0.9255 | 11.5622 | 0.9238 | 1.7489 × 10−3 | 1.8897 × 10−3 | 11.5403 | 2.1849 × 10−2 | 1.8897 × 10−3 |
13 | 12.6490 | 0.9120 | 11.5359 | 0.9130 | 1.0498 × 10−3 | 1.1511 × 10−3 | 11.5492 | 1.3279 × 10−2 | 1.1511 × 10−3 |
14 | 13.1231 | 0.8725 | 11.4499 | 0.8734 | 9.4543 × 10−4 | 1.0836 × 10−3 | 11.4623 | 1.2407 × 10−2 | 1.0836 × 10−3 |
15 | 14.2221 | 0.7265 | 10.3324 | 0.7285 | 1.9887 × 10−3 | 2.7373 × 10−3 | 10.3606 | 2.8283 × 10−2 | 2.7373 × 10−3 |
16 | 14.6995 | 0.6345 | 9.3268 | 0.6366 | 2.1171 × 10−3 | 3.3366 × 10−3 | 9.3580 | 3.1120 × 10−2 | 3.3366 × 10−3 |
17 | 15.1346 | 0.5345 | 8.0894 | 0.5355 | 9.5355 × 10−4 | 1.7840 × 10−3 | 8.1039 | 1.4432 × 10−2 | 1.7840 × 10−3 |
18 | 15.5311 | 0.4275 | 6.6395 | 0.4283 | 7.5683 × 10−4 | 1.7704 × 10−3 | 6.6513 | 1.1754 × 10−2 | 1.7704 × 10−3 |
19 | 15.8929 | 0.3185 | 5.0619 | 0.3179 | 5.7513 × 10−4 | 1.8057 × 10−3 | 5.0527 | 9.1405 × 10−3 | 1.8057 × 10−3 |
20 | 16.2229 | 0.2085 | 3.3825 | 0.2071 | 1.4148 × 10−3 | 6.7858 × 10−3 | 3.3595 | 2.2953 × 10−2 | 6.7858 × 10−3 |
21 | 16.5241 | 0.1010 | 1.6689 | 0.0977 | 3.2897 × 10−3 | 3.2571 × 10−2 | 1.6146 | 5.4359 × 10−2 | 3.2571 × 10−2 |
22 | 16.7987 | −0.0080 | −0.1344 | −0.0086 | 5.5144 × 10−4 | −6.8930 × 10−2 | −0.1437 | 9.2634 × 10−3 | −6.8930 × 10−2 |
23 | 17.0499 | −0.1110 | −1.8925 | −0.1110 | 2.9072 × 10−5 | −2.6191 × 10−4 | −1.8920 | 4.9568 × 10−4 | −2.6191 × 10−4 |
24 | 17.2793 | −0.2090 | −3.6114 | −0.2087 | 3.4971 × 10−4 | −1.6732 × 10−3 | −3.6053 | 6.0427 × 10−3 | −1.6732 × 10−3 |
25 | 17.4885 | −0.3030 | −5.2990 | −0.3010 | 1.9809 × 10−3 | −6.5375 × 10−3 | −5.2644 | 3.4642 × 10−2 | −6.5375 × 10−3 |
4.2779 × 10−2 | 4.5310 × 10−1 | ||||||||
1.7623 × 10−3 |
RTC France | STP6−12/36 | PWP201 | ||
---|---|---|---|---|
Parameter | % Variation | RMSE (A) | RMSE (A) | RMSE (A) |
Ipℎ | +5 | 3.386141 × 10−2 | 3.307724 × 10−1 | 4.269409 × 10−2 |
−5 | 3.390541 × 10−2 | 3.318923 × 10−1 | 4.281554 × 10−2 | |
+5 | 8.858318 × 10−3 | 6.173882 × 10−2 | 2.113757 × 10−3 | |
−5 | 9.118680 × 10−3 | 6.314808 × 10−2 | 2.113776 × 10−3 | |
+5 | 1.887529 × 10−3 | 1.612278 × 10−2 | 1.449201 × 10−2 | |
−5 | 1.895500 × 10−3 | 1.612954 × 10−2 | 1.498657 × 10−2 | |
+5 | 8.003946 × 10−4 | 1.430694 × 10−2 | 2.134671 × 10−3 | |
−5 | 8.116866 × 10−4 | 1.430688 × 10−2 | 2.151207 × 10−3 | |
+5 | 2.566258 × 10−3 | 3.945228 × 10−2 | 4.867641 × 10−3 | |
−5 | 2.607148 × 10−3 | 3.954989 × 10−2 | 4.955742 × 10−3 | |
+5 | 1.111639 × 10−1 | 7.087283 × 10−1 | 4.839321 × 10−3 | |
−5 | 1.658334 × 10−1 | 1.087732 × 10 | 9.417220 × 10−3 | |
+5 | 1.516574 × 10−2 | 7.412821 × 10−2 | 1.619020 × 10−1 | |
−5 | 2.876266 × 10−2 | 1.536272 × 10−1 | 2.090213 × 10−1 | |
Best RMSE | 7.478488 × 10−4 | 1.427010 × 10−2 | 2.061273 × 10−3 |
References
- Wang, S.; Wang, C.; Ge, Y.; Liu, S.; Xu, J.; Amer, R.A. In-depth analysis of photovoltaic module parameter estimation. Energy 2024, 291, 130345. [Google Scholar] [CrossRef]
- Mohamed, R.; Abdel-Basset, M.; Sallam, K.M.; Hezam, I.M.; Alshamrani, A.M.; Hameed, I.A. Novel hybrid kepler optimization algorithm for parameter estimation of photovoltaic modules. Sci. Rep. 2024, 14, 3453. [Google Scholar] [CrossRef] [PubMed]
- Tadj, M.; Benmouiza, K.; Cheknane, A.; Silvestre, S. Improving the performance of PV systems by faults detection using GISTEL approach. Energy Convers. Manag. 2014, 80, 298–304. [Google Scholar] [CrossRef]
- Elshahed, M.; El-Rifaie, A.M.; Tolba, M.A.; Ginidi, A.; Shaheen, A.; Mohamed, S.A. An Innovative Hunter-Prey-Based Optimization for Electrically Based Single-, Double-, and Triple-Diode Models of Solar Photovoltaic Systems. Mathematics 2022, 10, 4625. [Google Scholar] [CrossRef]
- Aribia, H.B.; El-Rifaie, A.M.; Tolba, M.A.; Shaheen, A.; Moustafa, G.; Elsayed, F.; Elshahed, M. Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules. Sustainability 2023, 15, 7896. [Google Scholar] [CrossRef]
- Khemili, F.Z.; Bouhali, O.; Lefouili, M.; Chaib, L.; El-Fergany, A.A.; Agwa, A.M. Design of cascaded multilevel inverter and enhanced MPPT method for large-scale photovoltaic system integration. Sustainability 2023, 15, 9633. [Google Scholar] [CrossRef]
- Singsathid, P.; Wetweerapong, J.; Puphasuk, P. Parameter estimation of solar PV models using self-adaptive differential evolution with dynamic mutation and pheromone strategy. Comput. Sci. 2024, 19, 13–21. [Google Scholar]
- Tadj, M.; Chaib, L.; Choucha, A.; Aldaoudeyeh, A.-M.; Fathy, A.; Rezk, H.; Louzazni, M.; El-Fergany, A. Enhanced MPPT-Based Fractional-Order PID for PV Systems Using Aquila Optimizer. Math. Comput. Appl. 2023, 28, 99. [Google Scholar] [CrossRef]
- Venkateswari, R.; Rajasekar, N. Review on parameter estimation techniques of solar photovoltaic systems. Int. Trans. Electr. Energy Syst. 2021, 31, e13113. [Google Scholar] [CrossRef]
- Qaraad, M.; Amjad, S.; Hussein, N.K.; Farag, M.A.; Mirjalili, S.; Elhosseini, M.A. Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation. Expert Syst. Appl. 2024, 236, 121417. [Google Scholar] [CrossRef]
- Chan, D.S.H.; Phillips, J.R.; Phang, J.C.H. A comparative study of extraction methods for solar cell model parameters. Solid-State Electron. 1986, 29, 329–337. [Google Scholar] [CrossRef]
- Cárdenas, A.A.; Carrasco, M.; Mancilla-David, F.; Street, A.; Cardenas, R. Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search. IEEE Trans. Ind. Electron. 2016, 64, 1468–1476. [Google Scholar] [CrossRef]
- Chenche, L.E.P.; Mendoza, O.S.H.; Bandarra Filho, E.P. Comparison of four methods for parameter estimation of mono-and multi-junction photovoltaic devices using experimental data. Renew. Sustain. Energy Rev. 2018, 81, 2823–2838. [Google Scholar] [CrossRef]
- Tong, N.T.; Pora, W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy 2016, 176, 104–115. [Google Scholar] [CrossRef]
- Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [Google Scholar] [CrossRef]
- Chatterjee, A.; Keyhani, A.; Kapoor, D. Identification of photovoltaic source models. IEEE Trans. Energy Convers. 2011, 26, 883–889. [Google Scholar] [CrossRef]
- El Achouby, H.; Zaimi, M.; Ibral, A.; Assaid, E.M. New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Convers. Manag. 2018, 177, 258–271. [Google Scholar] [CrossRef]
- Durganjali, C.S.; Avinash, G.; Megha, K.; Ponnalagu, R.N.; Goel, S.; Radhika, S. Prediction of PV cell parameters at different temperatures via ML algorithms and comparative performance analysis in Multiphysics environment. Energy Convers. Manag. 2023, 282, 116881. [Google Scholar] [CrossRef]
- Yuen, M.C.; Ng, S.C.; Leung, M.F.; Che, H. A metaheuristic-based framework for index tracking with practical constraints. Complex Intell. Syst. 2022, 8, 4571–4586. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Taheri, H.; Shamsudin, A. A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model. Sol. Energy 2011, 85, 1768–1779. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 2012, 86, 3241–3249. [Google Scholar] [CrossRef]
- Hasanien, H.M. Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans. Sustain. Energy 2015, 6, 509–515. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72, 93–102. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Hameed, M.A.; El-Fergany, A.A.; El-Arini, M.M. Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain. Energy Technol. Assess. 2016, 17, 68–76. [Google Scholar] [CrossRef]
- Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manag. 2016, 129, 262–274. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 2016, 99, 170–180. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.J.; Qu, B.Y.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.J.; Qu, B.Y.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Heidari, A.A.; Mirjalili, S. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [Google Scholar] [CrossRef]
- Li, S.; Gu, Q.; Gong, W.; Ning, B. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 205, 112443. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- Liang, J.; Ge, S.; Qu, B.; Yu, K.; Liu, F.; Yang, H.; Wei, P.; Li, Z. Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Convers. Manag. 2020, 203, 112138. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z. Coyote optimization algorithm for the parameter extraction of photovoltaic cells. Sol. Energy 2019, 194, 656–670. [Google Scholar] [CrossRef]
- El-Hameed, M.A.; Elkholy, M.M.; El-Fergany, A.A. Three-diode model for characterization of industrial solar generating units using Manta-rays foraging optimizer: Analysis and validations. Energy Convers. Manag. 2020, 219, 113048. [Google Scholar] [CrossRef]
- Chaib, L.; Choucha, A.; Tadj, M.; Khemili, F.Z. Application of New Optimization Algorithm for Parameters Estimation in Photovoltaic Modules. In International Conference on Artificial Intelligence in Renewable Energetic Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 785–793. [Google Scholar]
- Alghamdi, M.A.; Khan, M.F.N.; Khan, A.K.; Khan, I.; Ahmed, A.; Kiani, A.T.; Khan, M.A. PV model parameter estimation using modified FPA with dynamic switch probability and step size function. IEEE Access 2021, 9, 42027–42044. [Google Scholar]
- Gude, S.; Jana, K.C. Parameter extraction of photovoltaic cell using an improved cuckoo search optimization. Sol. Energy 2020, 204, 280–293. [Google Scholar] [CrossRef]
- Liu, Y.; Heidari, A.A.; Ye, X.; Liang, G.; Chen, H.; He, C. Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy 2021, 234, 121164. [Google Scholar] [CrossRef]
- Gnetchejo, P.J.; Ndjakomo Essiane, S.; Dadjé, A.; Ele, P.; Mbadjoun Wapet, D.E.; Perabi Ngoffe, S.; Chen, Z. A self-adaptive algorithm with Newton Raphson method for parameters identification of photovoltaic modules and array. Trans. Electr. Electron. Mater. 2021, 22, 869–888. [Google Scholar] [CrossRef]
- Pardhu, B.G.; Kota, V.R. Radial movement optimization based parameter extraction of double diode model of solar photovoltaic cell. Sol. Energy 2021, 213, 312–327. [Google Scholar] [CrossRef]
- Premkumar, M.; Jangir, P.; Ramakrishnan, C.; Kumar, C.; Sowmya, R.; Deb, S.; Kumar, N.M. An enhanced Gradient-based Optimizer for parameter estimation of various solar photovoltaic models. Energy Rep. 2022, 8, 15249–15285. [Google Scholar] [CrossRef]
- Moustafa, G.; Alnami, H.; Ginidi, A.R.; Shaheen, A.M. An improved Kepler optimization algorithm for module parameter identification supporting PV power estimation. Heliyon 2024, 10, e39902. [Google Scholar] [CrossRef] [PubMed]
- Hakmi, S.H.; Alnami, H.; Ginidi, A.; Shaheen, A.; Alghamdi, T.A.H. A Fractional Order-Kepler Optimization Algorithm (FO-KOA) for single and double-diode parameters PV cell extraction. Heliyon 2024, 10, e35771. [Google Scholar] [CrossRef] [PubMed]
- Rezk, H.; Abdelkareem, M.A. Optimal parameter identification of triple diode model for solar photovoltaic panel and cells. Energy Rep. 2022, 8, 1179–1188. [Google Scholar] [CrossRef]
- Smaili, I.H.; Moustafa, G.; Almalawi, D.R.; Ginidi, A.; Shaheen, A.M.; Mansour, H.S.E. Enhanced Artificial Rabbits Algorithm Integrating Equilibrium Pool to Support PV Power Estimation via Module Parameter Identification. Int. J. Energy Res. 2024, 2024. [Google Scholar] [CrossRef]
- Moustafa, G.; Alnami, H.; Hakmi, S.H.; Ginidi, A.; Shaheen, A.M.; Al-Mufadi, F.A. An Advanced Bio-Inspired Mantis Search Algorithm for Characterization of PV Panel and Global Optimization of Its Model Parameters. Biomimetics 2023, 8, 490. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, M.; Sundaram, A.; Ridha, H.M.; Mirjalili, S. Estimation of photovoltaic models using an enhanced Henry gas solubility optimization algorithm with first-order adaptive damping Berndt-Hall-Hall-Hausman method. Energy Convers. Manag. 2024, 299, 117831. [Google Scholar] [CrossRef]
- Navarro, M.A.; Oliva, D.; Ramos-Michel, A.; Haro, E.H. An analysis on the performance of metaheuristic algorithms for the estimation of parameters in solar cell models. Energy Convers. Manag. 2023, 276, 116523. [Google Scholar] [CrossRef]
- Sharma, P.; Raju, S. Efficient estimation of PV parameters for existing datasets by using an intelligent algorithm. Optik 2023, 295, 171467. [Google Scholar] [CrossRef]
- El Marghichi, M.; Dangoury, S. Electrical parameters identification for three diode photovoltaic based on the manta ray foraging optimization with dynamic fitness distance balance. Optik 2024, 296, 171548. [Google Scholar] [CrossRef]
- Hakmi, S.H.; Alnami, H.; Moustafa, G.; Ginidi, A.R.; Shaheen, A.M. Modified Rime-Ice Growth Optimizer with Polynomial Differential Learning Operator for Single- and Double-Diode PV Parameter Estimation Problem. Electronics 2024, 13, 1611. [Google Scholar] [CrossRef]
- Çetinbaş, İ.; Tamyurek, B.; Demirtaş, M. Parameter extraction of photovoltaic cells and modules by hybrid white shark optimizer and artificial rabbits optimization. Energy Convers. Manag. 2023, 296, 117621. [Google Scholar] [CrossRef]
- Moustafa, G.; Smaili, I.H.; Almalawi, D.R.; Ginidi, A.R.; Shaheen, A.M.; Elshahed, M.; Mansour, H.S. Dwarf Mongoose Optimizer for Optimal Modeling of Solar PV Systems and Parameter Extraction. Electronics 2023, 12, 4990. [Google Scholar] [CrossRef]
- Gu, Z.; Xiong, G.; Fu, X.; Mohamed, A.W.; Al-Betar, M.A.; Chen, H.; Chen, J. Extracting accurate parameters of photovoltaic cell models via elite learning adaptive differential evolution. Energy Convers. Manag. 2023, 285, 116994. [Google Scholar] [CrossRef]
- Alsaggaf, W.; Gafar, M.; Sarhan, S.; Shaheen, A.M.; Ginidi, A.R. Chemical-Inspired Material Generation Algorithm (MGA) of Single- and Double-Diode Model Parameter Determination for Multi-Crystalline Silicon Solar Cells. Appl. Sci. 2024, 14, 8549. [Google Scholar] [CrossRef]
- Kler, D.; Sharma, P.; Banerjee, A.; Rana, K.P.S.; Kumar, V. PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm. Swarm Evol. Comput. 2017, 35, 93–110. [Google Scholar] [CrossRef]
- Abido, M.A.; Khalid, M.S. Seven-parameter PV model estimation using differential evolution. Electr. Eng. 2018, 100, 971–981. [Google Scholar] [CrossRef]
- Hao, Q.; Zhou, Z.; Wei, Z.; Chen, G. Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution. IEEE Access 2020, 8, 35979–35994. [Google Scholar] [CrossRef]
- Rezk, H.; Arfaoui, J.; Gomaa, M.R. Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms. 2021. Available online: https://reunir.unir.net/handle/123456789/12963 (accessed on 15 November 2024).
- Tefek, M.F. Artificial bee colony algorithm based on a new local search approach for parameter estimation of photovoltaic systems. J. Comput. Electron. 2021, 20, 2530–2562. [Google Scholar] [CrossRef]
- Shankar, N.; Saravanakumar, N.; Kumar, C.; Kamatchi Kannan, V.; Indu Rani, B. Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models. J. Comput. Electron. 2021, 20, 1560–1587. [Google Scholar] [CrossRef]
- Singh, O.; Ghosh, A.; Ray, A.K. Two, four, and five parameters estimation based modelling of Si cell, mono-crystalline and poly-crystalline PV modules. Silicon 2022, 14, 12191–12202. [Google Scholar] [CrossRef]
- El-Dabah, M.A.; El-Sehiemy, R.A.; Ebrahim, M.A.; Alaas, Z.; Ramadan, M.M. Identification study of solar cell/module using recent optimization techniques. Int. J. Electr. Comput. Eng. 2022, 12, 1189. [Google Scholar] [CrossRef]
- Abd El-Mageed, A.A.; Abohany, A.A.; Saad, H.M.; Sallam, K.M. Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution. Appl. Soft Comput. 2023, 134, 110032. [Google Scholar] [CrossRef]
- Garip, Z. Parameters estimation of three-diode photovoltaic model using fractional-order Harris Hawks optimization algorithm. Optik 2023, 272, 170391. [Google Scholar] [CrossRef]
- El-Sehiemy, R.; Shaheen, A.; El-Fergany, A.; Ginidi, A. Electrical parameters extraction of PV modules using artificial hummingbird optimizer. Sci. Rep. 2023, 13, 9240. [Google Scholar] [CrossRef] [PubMed]
- Chaib, L.; Tadj, M.; Choucha, A.; Khemili, F.Z.; Attia, E.F. Improved crayfish optimization algorithm for parameters estimation of photovoltaic models. Energy Convers. Manag. 2024, 313, 118627. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Wang, Y.; Yan, Y.; Zhao, J.; Gao, Z. Self-adaptive enhanced learning differential evolution with surprisingly efficient decomposition approach for parameter identification of photovoltaic models. Energy Convers. Manag. 2024, 308, 118387. [Google Scholar] [CrossRef]
- Zhou, T.T.; Shang, C. Parameter identification of solar photovoltaic models by multi strategy sine–cosine algorithm. Energy Sci. Eng. 2024, 12, 1422–1445. [Google Scholar] [CrossRef]
- Słowik, A.; Cpałka, K.; Xue, Y.; Hapka, A. An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm. Appl. Energy 2024, 364, 123208. [Google Scholar] [CrossRef]
- Izci, D.; Ekinci, S.; Altalhi, M.; Daoud, M.S.; Migdady, H.; Abualigah, L. A new modified version of mountain gazelle optimization for parameter extraction of photovoltaic models. Electr. Eng. 2024, 106, 6565–6585. [Google Scholar] [CrossRef]
- Prakash, T.; Singh, P.P.; Singh, V.P.; Singh, S.N. A novel brown-bear optimization algorithm for solving economic dispatch problem. In Advanced Control & Optimization Paradigms for Energy System Operation and Management; River Publishers: Aalborg, Denmark, 2023; pp. 137–164. [Google Scholar]
- Amiri, M.H.; Mehrabi Hashjin, N.; Montazeri, M.; Mirjalili, S.; Khodadadi, N. Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm. Sci. Rep. 2024, 14, 5032. [Google Scholar] [CrossRef]
- Tadj, M.; Chaib, L.; Choucha, A.; Alhazmi, M.; Alwabli, A.; Bajaj, M.; Dost Mohammadi, S.A. Improved chaotic Bat algorithm for optimal coordinated tuning of power system stabilizers for multimachine power system. Sci. Rep. 2024, 14, 15124. [Google Scholar] [CrossRef] [PubMed]
- Chaib, L.; Choucha, A.; Arif, S.; Zaini, H.G.; El-Fergany, A.; Ghoneim, S.S. Robust design of power system stabilizers using improved harris hawk optimizer for interconnected power system. Sustainability 2021, 13, 11776. [Google Scholar] [CrossRef]
- Chaib, L.; Choucha, A.; Arif, S. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng. J. 2017, 8, 113–125. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D. Discrete chaos in fractional sine and standard maps. Phys. Lett. A 2014, 378, 484–487. [Google Scholar] [CrossRef]
- Saadaoui, D.; Elyaqouti, M.; Assalaou, K.; Ben Hmamou, D.; Lidaighbi, S.; Arjdal, E.; Choulli, I.; Elhammoudy, A. Extraction of single diode PV cell/module model parameters using a hybrid BMO approach with Lambert’s W function. Int. J. Ambient Energy 2024, 45, 2304331. [Google Scholar] [CrossRef]
- Elhammoudy, A.; Elyaqouti, M.; Hmamou, D.B.; Lidaighbi, S.; Saadaoui, D.; Choulli, I.; Abazine, I. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification. Energy Convers. Manag. X 2023, 19, 100405. [Google Scholar] [CrossRef]
- Mlazi, N.J.; Mayengo, M.; Lyakurwa, G.; Kichonge, B. Mathematical modeling and extraction of parameters of solar photovoltaic module based on modified Newton–Raphson method. Results Phys. 2024, 57, 107364. [Google Scholar] [CrossRef]
- Düzenli, T.; Onay, F.K.; Aydemir, S.B. Improved honey badger algorithms for parameter extraction in photovoltaic models. Optik 2022, 268, 169731. [Google Scholar] [CrossRef]
- Ridha, H.M.; Heidari, A.A.; Wang, M.; Chen, H. Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers. Manag. 2020, 209, 112660. [Google Scholar] [CrossRef]
- Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Li, K. Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 2018, 212, 1578–1588. [Google Scholar] [CrossRef]
- Li, L.; Xiong, G.; Yuan, X.; Zhang, J.; Chen, J. Parameter extraction of photovoltaic models using a dynamic self-adaptive and mutual-comparison teaching-learning-based optimization. IEEE Access 2021, 9, 52425–52441. [Google Scholar] [CrossRef]
- Liang, J.; Qiao, K.; Yu, K.; Ge, S.; Qu, B.; Xu, R.; Li, K. Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Sol. Energy 2020, 207, 336–346. [Google Scholar] [CrossRef]
- Gao, S.; Wang, K.; Tao, S.; Jin, T.; Dai, H.; Cheng, J. A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers. Manag. 2021, 230, 113784. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Sallam, K.M.; Munasinghe, K. Parameter extraction of photovoltaic models using a memory-based improved gorilla troops optimizer. Energy Convers. Manag. 2022, 252, 115134. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.; Kang, H.; Shen, Y.; Chen, Q. Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Rep. 2022, 8, 4724–4746. [Google Scholar] [CrossRef]
Function | Formula | Dimensions | Interval |
---|---|---|---|
F1 | 30 | [100, 100] | |
F2 | 30 | [10, 10] | |
F3 | 30 | [100, 100] | |
F4 | 30 | [100, 100] | |
F5 | 30 | [30, 30] | |
F6 | 30 | [100, 100] | |
F7 | 30 | [1.28, 1.28] |
Function | Formula | Dimensions | Interval |
---|---|---|---|
F8 | 30 | [−500, 500] | |
F9 | 30 | [−5.12, 5.12] | |
F10 | 30 | [−30, 30] | |
F11 | 30 | [−600, 600] | |
F12 | 30 | [−50, 50] | |
F13 | 30 | [−50, 50] |
Alternative Optimizers | ||||||||
---|---|---|---|---|---|---|---|---|
Fun No. | Measure | EBOA | BOA | PSO | BA | SCA | WOA | STOA |
F1 | Worst | 34,346 × 10−273 | 10,052 × 10−266 | 19,834 × 10−2 | 17,959 × 104 | 15,341 × 102 | 24,018 × 10−70 | 13,549 × 10−6 |
Best | 52,067 × 10−293 | 12,440 × 10−282 | 63,112 × 10−4 | 59,745 × 103 | 54,241 × 10−2 | 28,197 × 10−84 | 36,303 × 10−9 | |
Std | 00,000 × 100 | 00,000 × 100 | 51,431 × 10−3 | 30,936 × 103 | 41,459 × 101 | 47,996 × 10−71 | 33,224 × 10−7 | |
Average | 11,729 × 10−274 | 41,086 × 10−268 | 45,987 × 10−3 | 10,425 × 104 | 20,479 × 101 | 98,326 × 10−72 | 21,639 × 10−7 | |
F2 | Worst | 24,748 × 10−138 | 19,809 × 10−134 | 20,208 × 101 | 40,200 × 103 | 66,422 × 10−2 | 72,149 × 10−50 | 32,774 × 10−5 |
Best | 65,314 × 10−153 | 97,044 × 10−145 | 18,009 × 10−3 | 27,217 × 101 | 18,852 × 10−4 | 26,103 × 10−58 | 58,972 × 10−7 | |
Std | 63,245 × 10−139 | 44,975 × 10−135 | 44,282 × 100 | 82,025 × 102 | 16,957 × 10−2 | 15,461 × 10−50 | 89,905 × 10−6 | |
Average | 21,896 × 10−139 | 15,969 × 10−135 | 12,307 × 100 | 25,682 × 102 | 13,443 × 10−2 | 59,194 × 10−51 | 93,523 × 10−6 | |
F3 | Worst | 18,583 × 10−23 | 31,483 × 10−197 | 64,410 × 103 | 57,757 × 104 | 21,516 × 104 | 79,270 × 104 | 44,111 × 10−1 |
Best | 31,202 × 10−244 | 35,588 × 10−228 | 63,474 × 102 | 11,693 × 104 | 13,525 × 103 | 14,808 × 104 | 45,720 × 10−4 | |
Std | 00,000 × 100 | 00,000 × 100 | 16,760 × 103 | 12,635 × 104 | 51,042 × 103 | 15,495 × 104 | 10,940 × 10−1 | |
Average | 10,829 × 10−24 | 10,972 × 10−198 | 19,388 × 103 | 33,990 × 104 | 78,818 × 103 | 46,307 × 104 | 89,518 × 10−2 | |
F4 | Worst | 27,954 × 10−127 | 22,129 × 10−126 | 91,165 × 100 | 52,999 × 101 | 70,165 × 101 | 84,214 × 101 | 63,421 × 10−2 |
Best | 89,258 × 10−138 | 40,058 × 10−137 | 35,114 × 100 | 31,939 × 101 | 60,155 × 100 | 43,429 × 10−1 | 83,971 × 10−3 | |
Std | 52,243 × 10−128 | 47,362 × 10−127 | 13,663 × 100 | 65,284 × 100 | 12,567 × 101 | 29,925 × 101 | 16,015 × 10−2 | |
Average | 14,384 × 10−128 | 12,243 × 10−127 | 71,187 × 100 | 40,989 × 101 | 35,716 × 101 | 49,933 × 101 | 31,625 × 10−2 | |
F5 | Worst | 25,700 × 101 | 26,054 × 101 | 90,082 × 104 | 22,728 × 107 | 82,106 × 104 | 28,773 × 101 | 28,806 × 101 |
Best | 00,000 × 100 | 00,000 × 100 | 28,195 × 101 | 17,384 × 106 | 48,723 × 101 | 27,127 × 101 | 27,228 × 101 | |
Std | 46,921 × 100 | 47,516 × 100 | 33,590 × 104 | 57,591 × 106 | 27,232 × 104 | 44,863 × 10−1 | 48,681 × 10−1 | |
Average | 85,666 × 10−1 | 94,793 × 10−1 | 14,665 × 104 | 87,099 × 106 | 20,712 × 104 | 27,932 × 101 | 28,142 × 101 | |
F6 | Worst | 00,000 × 100 | 00,000 × 100 | 38,476 × 10−2 | 20,137 × 104 | 43,454 × 101 | 86,177 × 10−1 | 39,225 × 100 |
Best | 00,000 × 100 | 00,000 × 100 | 57,243 × 10−4 | 62,942 × 103 | 48,363 × 100 | 95,794 × 10−2 | 14,988 × 100 | |
Std | 00,000 × 100 | 00,000 × 100 | 10,007 × 10−2 | 34,385 × 103 | 12,446 × 101 | 22,783 × 10−1 | 61,282 × 10−1 | |
Average | 00,000 × 100 | 00,000 × 100 | 73,990 × 10−3 | 11,425 × 104 | 14,673 × 101 | 47,106 × 10−1 | 26,549 × 100 | |
F7 | Worst | 60,190 × 10−4 | 60,391 × 10−4 | 66,283 × 10−2 | 87,852 × 100 | 15,955 × 100 | 13,495 × 10−2 | 15,884 × 10−2 |
Best | 34,587 × 10−6 | 43,499 × 10−5 | 32,056 × 10−2 | 12,009 × 100 | 31,976 × 10−3 | 13,618 × 10−4 | 91,766 × 10−4 | |
Std | 16,747 × 10−4 | 17,083 × 10−4 | 10,008 × 10−2 | 18,354 × 100 | 31,816 × 10−1 | 36,706 × 10−3 | 44,573 × 10−3 | |
Average | 20,755 × 10−4 | 24,228 × 10−4 | 45,341 × 10−2 | 38,237 × 100 | 14,348 × 10−1 | 35,971 × 10−3 | 71,961 × 10−3 | |
F8 | Worst | −12,569 × 104 | −12,569 × 104 | −72,577 × 103 | −22,880 × 103 | −31,586 × 103 | −71,131 × 103 | −46,269 × 103 |
Best | −12,569 × 104 | −12,569 × 104 | −93,896 × 103 | −56,689 × 103 | −46,273 × 103 | −12,566 × 104 | −64,860 × 103 | |
Std | 18,501 × 10−12 | 18,501 × 10−12 | 62,398 × 102 | 97,894 × 102 | 33,048 × 102 | 18,249 × 103 | 40,391 × 102 | |
Average | −12,569 × 104 | −12,569 × 104 | −84,657 × 103 | −34,206 × 103 | −38,027 × 103 | −10,092 × 104 | −52,231 × 103 | |
F9 | Worst | 00,000 × 100 | 00,000 × 100 | 81,588 × 101 | 12,537 × 102 | 11,313 × 102 | 11,369 × 10−13 | 47,643 × 101 |
Best | 00,000 × 100 | 00,000 × 100 | 33,846 × 101 | 27,863 × 101 | 17,147 × 10−1 | 00,000 × 100 | 22,843 × 10−7 | |
Std | 00,000 × 100 | 00,000 × 100 | 13,276 × 101 | 23,732 × 101 | 34,314 × 101 | 26,863 × 10−14 | 13,240 × 101 | |
Average | 00,000 × 100 | 00,000 × 100 | 54,966 × 101 | 68,775 × 101 | 38,762 × 101 | 90,949 × 10−15 | 11,408 × 101 | |
F10 | Worst | 88,818 × 10−16 | 88,818 × 10−16 | 23,166 × 100 | 16,111 × 101 | 20,334 × 101 | 79,936 × 10−15 | 19,963 × 101 |
Best | 88,818 × 10−16 | 88,818 × 10−16 | 30,331 × 10−3 | 11,996 × 101 | 68,122 × 10−2 | 88,818 × 10−16 | 19,958 × 101 | |
Std | 00,000 × 100 | 00,000 × 100 | 81,994 × 10−1 | 99,839 × 10−1 | 70,099 × 100 | 21,707 × 10−15 | 12,397 × 10−3 | |
Average | 88,818 × 10−16 | 88,818 × 10−16 | 54,677 × 10−1 | 14,538 × 101 | 16,572 × 101 | 42,988 × 10−15 | 19,960 × 101 | |
F11 | Worst | 00,000 × 100 | 00,000 × 100 | 88,791 × 10−2 | 17,538 × 102 | 32,011 × 100 | 19,550 × 10−1 | 98,008 × 10−2 |
Best | 00,000 × 100 | 00,000 × 100 | 10,016 × 10−2 | 60,727 × 101 | 20,689 × 10−1 | 00,000 × 100 | 10,233 × 10−8 | |
Std | 00,000 × 100 | 00,000 × 100 | 21,190 × 10−2 | 27,626 × 101 | 54,354 × 10−1 | 39,101 × 10−2 | 29,995 × 10−2 | |
Average | 00,000 × 100 | 00,000 × 100 | 34,690 × 10−2 | 11,058 × 102 | 97,475 × 10−1 | 78,201 × 10−3 | 23,729 × 10−2 | |
F12 | Worst | 15,705 × 10−32 | 97,443 × 10−31 | 92,698 × 10−1 | 14,889 × 107 | 48,595 × 103 | 83,802 × 10−2 | 78,377 × 10−1 |
Best | 15,705 × 10−32 | 15,705 × 10−32 | 60,281 × 10−6 | 68,350 × 103 | 67,866 × 10−1 | 46,345 × 10−3 | 48,884 × 10−2 | |
Std | 55,674 × 10−48 | 18,165 × 10−31 | 21,713 × 10−1 | 39,597 × 106 | 97,714 × 102 | 24,888 × 10−2 | 13,895 × 10−1 | |
Average | 15,705 × 10−32 | 73,317 × 10−32 | 12,499 × 10−1 | 31,634 × 106 | 24,296 × 102 | 26,900 × 10−2 | 25,525 × 10−1 | |
F13 | Worst | 13,498 × 10−32 | 34,844 × 10−30 | 34,537 × 10−1 | 53,121 × 107 | 15,841 × 106 | 13,944 × 100 | 24,467 × 100 |
Best | 13,498 × 10−32 | 13,498 × 10−32 | 12,213 × 10−3 | 10,410 × 106 | 26,987 × 100 | 20,232 × 10−1 | 14,266 × 100 | |
Std | 55,674 × 10−48 | 64,213 × 10−31 | 95,813 × 10−2 | 11,521 × 107 | 33,066 × 105 | 29,866 × 10−1 | 24,581 × 10−1 | |
Average | 13,498 × 10−32 | 16,819 × 10−31 | 82,392 × 10−2 | 15,490 × 107 | 10,981 × 105 | 65,070 × 10−1 | 19,136 × 100 |
Parameter | RTC France | PWP201 | STP6-120/36 | |||
---|---|---|---|---|---|---|
SDM/DDM | SDM/DDM | SDM/DDM | ||||
LB | UB | LB | UB | LB | UB | |
Iph (A) | 0 | 1 | 0 | 2 | 0 | 8 |
I01, I02 (μA) | 0 | 1 | 0 | 50 | 0 | 50 |
Rs (Ω) | 0 | 0.5 | 0 | 2 | 0 | 0.36 |
Rsh (Ω) | 0 | 100 | 0 | 2000 | 0 | 1500 |
a1, a2 | 1 | 2 | 1 | 50 | 1 | 2 |
PV Module/Cell | Optimizer | ||||||
---|---|---|---|---|---|---|---|
RTC France | EBOA | 0.76074 | 1.46584 | 2.76774 × 10−7 | 0.03656 | 48.75049 | 8.18384 × 10−4 |
HBA [81] | 0.76077 | 1.48118 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71851 | 9.86021 × 10−4 | |
FPA [82] | 0.76077 | 1.48105 | 3.22617 × 10−7 | 3.63804 × 10−2 | 53.65319 | 9.86021 × 10−4 | |
MLBSA [27] | 0.76077 | 1.48118 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71852 | 9.86021 × 10−4 | |
ITLBO [83] | 0.7608 | 1.4812 | 3.2310 × 10−7 | 3.6340 × 10−2 | 53.7187 | 9.86020 × 10−4 | |
DMTLBO [84] | 0.7608 | 1.4812 | 3.2302 × 10−6 | 3.6340 × 10−2 | 53.7183 | 9.86020 × 10−4 | |
SEDE [85] | 0.76077 | 1.48118 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71852 | 9.86021 × 10−4 | |
DPDE [86] | 0.76077 | 1.48118 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71852 | 9.86021 × 10−4 | |
MIGTO [87] | 0.76077 | 1.481183 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71852 | 9.86021 × 10−4 | |
IJAYA [27] | 0.76076 | 1.48137 | 3.23622 × 10−7 | 3.63708 × 10−2 | 53.83082 | 9.86021 × 10−4 | |
HDE [88] | 0.76078 | 1.48118 | 3.23020 × 10−7 | 3.63770 × 10−2 | 53.71852 | 9.86021 × 10−4 | |
STP6-120/36 | EBOA | 7.48156 | 1.2418 | 1.8694 × 10−6 | 0.16923 | 432.1108 | 1.430320 × 10−2 |
HBA [81] | 7.4603 | 1.2699 | 2.6278 × 10−6 | 0.1638 | 1500 | 1.67843 × 10−2 | |
FPA [82] | 7.4724 | 1.2606 | 2.3491 × 10−6 | 0.1652 | 814.0852 | 1.66007 × 10−2 | |
MLBSA [27] | 7.4715 | 1.2803 | 2.4673 × 10−6 | 0.1643 | 902.6820 | 1.66006 × 10−2 | |
ITLBO [83] | 7.4725 | 1.2601 | 2.3350 × 10−6 | 0.1656 | 799.9164 | 1.66010 × 10−2 | |
DMTLBO [84] | 7.4725 | 1.2601 | 2.3350 × 10−6 | 0.1656 | 799.9308 | 1.66010 × 10−2 | |
SEDE [85] | 7.4725 | 1.2756 | 2.3349 × 10−6 | 0.1654 | 799.9160 | 1.66006 × 10−2 | |
DPDE [86] | 7.4725 | 1.2601 | 2.3349 × 10−6 | 0.1654 | 799.9166 | 1.66006 × 10−2 | |
MIGTO [87] | 7.4718 | 1.3004 | 3.7256 × 10−6 | 0.1573 | 297.3660 | 1.66006 × 10−2 | |
IJAYA [27] | 7.4672 | 1.2753 | 2.2536 × 10−6 | 0.1654 | 771.8252 | 1.66013 × 10−2 | |
HDE [88] | 7.4725 | 1.2601 | 2.3349 × 10−6 | 0.1654 | 799.9160 | 1.66006 × 10−2 | |
PWP201 | EBOA | 1.03322 | 46.15385 | 1.7588 × 10−6 | 1.27924 | 634.95259 | 2.22008 × 10−3 |
HBA [81] | 1.03051 | 48.64283 | 3.48226 × 10−6 | 1.20127 | 981.98275 | 2.42507 × 10−3 | |
FPA [82] | 1.03048 | 48.63156 | 3.47234 × 10−6 | 1.20163 | 985.04957 | 2.42520 × 10−3 | |
MLBSA [27] | 1.03051 | 48.64283 | 3.48226 × 10−6 | 1.20127 | 981.98222 | 2.42507 × 10−3 | |
ITLBO [83] | 1.03050 | 48.64330 | 3.48270 × 10−6 | 1.20130 | 982.40380 | 2.42510 × 10−3 | |
DMTLBO [84] | 1.03050 | 48.64280 | 3.48230 × 10−6 | 1.20130 | 981.98220 | 2.42510 × 10−3 | |
SEDE [85] | 1.03051 | 48.64283 | 3.48226 × 10−6 | 1.20127 | 981.98246 | 2.42507 × 10−3 | |
DPDE [86] | 1.03051 | 48.64283 | 3.48220 × 10−6 | 1.20271 | 981.98227 | 2.42507 × 10−3 | |
MIGTO [87] | 1.02462 | 56.55348 | 20.3362 × 10−6 | 0.02676 | 1323.48643 | 2.42507 × 10−3 | |
IJAYA [27] | 1.03050 | 48.64631 | 3.48544 × 10−6 | 1.20120 | 983.27900 | 2.42507 × 10−5 | |
HDE [88] | 1.03051 | 48.64280 | 3.48226 × 10−6 | 1.20127 | 981.98224 | 2.42507 × 10−3 |
PV Module/Cell | Optimizer | ||||||||
---|---|---|---|---|---|---|---|---|---|
RTC France | EBOA | 0.76080 | 1.40680 | 1.25660 × 10−7 | 1.81563 | 7.51505 × 10−7 | 0.03730 | 55.05508 | 7.478488 × 10−4 |
HBA [81] | 0.76078 | 1.4500 | 2.2345 × 10−7 | 1.9999 | 7.7121 × 10−7 | 3.6751 × 10−2 | 55.5443 | 9.82488 × 10−4 | |
MLSBA [27] | 0.76080 | 1.4703 | 2.8411 × 10−7 | 1.9824 | 2.7277 × 10−7 | 3.6486 × 10−2 | 54.2657 | 9.84184 × 10−4 | |
FPA [82] | 0.76073 | 1.9917 | 1.0000 × 10−6 | 1.4442 | 2.0632 × 10−7 | 3.6710 × 10−2 | 58.2248 | 9.90582 × 10−4 | |
SEDE [85] | 0.76077 | 1.9999 | 2.7410 × 10−7 | 1.4703 | 2.8473 × 10−7 | 3.6510 × 10−2 | 54.2881 | 9.83996 × 10−4 | |
MIGTO [87] | 0.76078 | 1.4510 | 2.2597 × 10−7 | 1.9999 | 7.4934 × 10−7 | 3.6740 × 10−2 | 55.4854 | 9.82484 × 10−4 | |
DPDE [86] | 0.76078 | 1.4510 | 2.2596 × 10−7 | 2.0000 | 7.4949 × 10−7 | 3.6740 × 10−2 | 55.4869 | 9.82484 × 10−4 | |
HDE [88] | 0.76078 | 2.000 | 7.4934 × 10−7 | 1.451 | 2.2597 × 10−7 | 3.6740 × 10−2 | 55.4854 | 9.82484 × 10−4 | |
IJAYA [27] | 0.76010 | 1.2185 | 5.0445 × 10−9 | 1.6247 | 7.5094 × 10−7 | 3.7600 × 10−2 | 77.8519 | 9.82930 × 10−3 | |
STP6-120/36 | EBOA | 7.47353 | 44.55638 | 1.58944 × 10−6 | 47.20850 | 4.42635 × 10−7 | 0.16883 | 635.78665 | 1.427010 × 10−2 |
SEDE [85] | 7.4765 | 1.2754 | 2.4125 × 10−6 | 1.0607 | 1.9140 × 10−8 | 0.1688 | 582.4523 | 1.68465 × 10−2 | |
MLSBA [27] | 7.4768 | 1.2584 | 2.2461 × 10−6 | 1.3008 | 6.8850 × 10−8 | 0.1654 | 633.7942 | 1.66258 × 10−2 | |
DPDE [86] | 7.4725 | 1.8827 | 2.1127 × 10−18 | 1.2601 | 2.3349 × 10−6 | 0.1654 | 799.9163 | 1.66006 × 10−2 | |
IJAYA [27] | 7.4759 | 1.2650 | 2.4601 × 10−6 | 1.9990 | 3.6638 × 10−6 | 0.1635 | 837.2170 | 1.69522 × 10−2 | |
PWP201 | EBOA | 1.03143 | 46.21139 | 5.60179 × 10−8 | 47.71761 | 2.63904 × 10−6 | 1.23296 | 822.95825 | 2.061273 × 10−3 |
HBA [81] | 1.0305 | 48.6388 | 3.1176 × 10−7 | 48.6293 | 3.1590 × 10−6 | 1.20164 | 981.0549 | 2.42510 × 10−3 | |
MLSBA [27] | 1.0304 | 48.5828 | 7.6463 × 10−8 | 48.6496 | 3.4107 × 10−6 | 1.20118 | 987.2186 | 2.425099 × 10−3 | |
FPA [82] | 1.0292 | 50 | 9.6636 × 10−7 | 48.4082 | 2.6346 × 10−6 | 1.20165 | 1161.7881 | 2.45263 × 10−3 | |
SEDE [85] | 1.0305 | 48.6436 | 1.8570 × 10−6 | 48.6351 | 1.6223 × 10−6 | 1.20134 | 980.8042 | 2.425076 × 10−3 | |
DPDE [86] | 1.0305 | 48.6428 | 1.7389 × 10−6 | 48.6428 | 1.7433 × 10−6 | 1.20127 | 981.9822 | 2.425074 × 10−3 | |
IJAYA [27] | 1.0306 | 47.5070 | 1.7940 × 10−8 | 48.4311 | 3.2690 × 10−6 | 1.20676 | 925.9600 | 2.44562 × 10−3 |
Employed Algorithms | ||||||||
---|---|---|---|---|---|---|---|---|
PV Module/Cell | Measure | EBOA | BOA | PSO | BA | SCA | STOA | WOA |
RTC France | Std | 0.000466 | 0.006503 | 0.035204 | 0.018983 | 0.013285 | 0.010446 | 0.014241 |
Average | 0.001209 | 0.005391 | 0.051791 | 0.026258 | 0.033528 | 0.005799 | 0.013858 | |
Worst | 0.002090 | 0.024013 | 0.119509 | 0.050426 | 0.050795 | 0.037994 | 0.048406 | |
Best | 0.000818 | 0.000986 | 0.001409 | 0.003521 | 0.015852 | 0.000988 | 0.001209 | |
STP6-120/36 | Std | 0.008785 | 0.048210 | 0.589954 | 0.540366 | 0.077886 | 0.048703 | 0.007593 |
Average | 0.018352 | 0.037107 | 0.459092 | 0.383753 | 0.107564 | 0.035143 | 0.025806 | |
Worst | 0.052952 | 0.214284 | 1.819860 | 1.413122 | 0.319543 | 0.236849 | 0.044955 | |
Best | 0.014303 | 0.014427 | 0.016869 | 0.027154 | 0.031466 | 0.014559 | 0.015399 | |
PWP201 | Std | 0.003124 | 0.006152 | 0.123922 | 0.114793 | 0.061612 | 0.068141 | 0.028330 |
Average | 0.004067 | 0.008293 | 0.065658 | 0.087338 | 0.045335 | 0.033881 | 0.014573 | |
Worst | 0.016220 | 0.027346 | 0.497088 | 0.275789 | 0.275792 | 0.225691 | 0.131506 | |
Best | 0.002220 | 0.002477 | 0.002328 | 0.003095 | 0.006938 | 0.002472 | 0.002512 |
PV Module/Cell | Measure | Comparative Algorithms | ||||||
---|---|---|---|---|---|---|---|---|
EBOA | BOA | PSO | BA | SCA | STOA | WOA | ||
RTC France | Std | 0.000260 | 0.009401 | 0.282503 | 0.036805 | 0.030387 | 0.269096 | 0.011963 |
Average | 0.000942 | 0.004622 | 0.383483 | 0.032667 | 0.035264 | 0.189322 | 0.011971 | |
Worst | 0.001623 | 0.040751 | 1.068761 | 0.098770 | 0.097183 | 0.734283 | 0.039495 | |
Best | 0.000748 | 0.000854 | 0.008265 | 0.002921 | 0.008545 | 0.002207 | 0.002505 | |
STP6-120/36 | Std | 0.000918 | 0.116976 | 1.854783 | 0.104066 | 0.079437 | 0.998330 | 0.083037 |
Average | 0.014652 | 0.089204 | 3.155799 | 0.101195 | 0.113995 | 0.390756 | 0.057722 | |
Worst | 0.018421 | 0.383094 | 7.608302 | 0.394694 | 0.338034 | 3.403038 | 0.394565 | |
Best | 0.014270 | 0.014427 | 0.045460 | 0.029041 | 0.041901 | 0.016217 | 0.014514 | |
PWP201 | Std | 0.001520 | 0.001662 | 0.282503 | 0.036805 | 0.030387 | 0.269096 | 0.011963 |
Average | 0.002985 | 0.004620 | 0.383483 | 0.032667 | 0.035264 | 0.189322 | 0.011971 | |
Worst | 0.007236 | 0.008145 | 1.068761 | 0.098770 | 0.097183 | 0.734283 | 0.039495 | |
Best | 0.002061 | 0.002133 | 0.008265 | 0.002921 | 0.008545 | 0.002207 | 0.002505 |
Identified Parameters | |||||||
---|---|---|---|---|---|---|---|
PV Module/Cell | Optimizer | ||||||
RTC France | EBOA | 0.76074 | 1.46584 | 0.27677 | 0.03656 | 48.75049 | 8.18384 × 10−4 |
BOA | 0.76122 | 1.51146 | 0.43339 | 0.03511 | 56.23840 | 9.855673 × 10−4 | |
PSO | 0.76108 | 1.51794 | 0.45818 | 0.03457 | 49.93541 | 1.408906 × 10−3 | |
BA | 0.76021 | 1.50952 | 0.42635 | 0.03534 | 71.14412 | 9.881127 × 10−4 | |
SCA | 0.76727 | 1.00000 | 0.00030 | 0.06783 | 29.84489 | 1.585196 × 10−2 | |
STOA | 0.75797 | 1.47589 | 0.31153 | 0.03700 | 89.32690 | 3.520927 × 10−3 | |
WOA | 0.75994 | 1.52588 | 0.49769 | 0.03482 | 85.76491 | 1.208675 × 10−3 | |
STP6-120/36 | EBOA | 7.48156 | 44.70655 | 1.86937 | 0.16923 | 432.11083 | 1.430320 × 10−2 |
BOA | 7.46384 | 45.00911 | 2.07425 | 0.16809 | 1476.52501 | 1.442695 × 10−2 | |
PSO | 7.45750 | 43.13704 | 1.07257 | 0.17991 | 859.03909 | 1.686895 × 10−2 | |
BA | 7.47148 | 45.58258 | 2.51101 | 0.16422 | 991.97891 | 1.455934 × 10−2 | |
SCA | 7.52296 | 50.00000 | 9.49796 | 0.13764 | 1156.23808 | 3.146588 × 10−2 | |
STOA | 7.49039 | 50.00000 | 9.40477 | 0.13613 | 1451.76317 | 2.715378 × 10−2 | |
WOA | 7.47311 | 46.28204 | 3.14966 | 0.15984 | 1264.51024 | 1.539900 × 10−2 | |
PWP201 | EBOA | 1.03322 | 46.15385 | 1.75875 | 1.27924 | 634.95259 | 2.220075 × 10−3 |
BOA | 1.03521 | 45.24490 | 1.34505 | 1.30553 | 535.69807 | 2.476718 × 10−3 | |
PSO | 1.03438 | 48.06259 | 2.97706 | 1.21093 | 646.53044 | 2.328492 × 10−3 | |
BA | 1.02907 | 46.43618 | 1.91615 | 1.28118 | 970.19848 | 2.471905 × 10−3 | |
SCA | 1.03250 | 49.90009 | 4.75089 | 1.23856 | 790.00686 | 6.937771 × 10−3 | |
STOA | 1.03302 | 50.00000 | 4.90493 | 1.18077 | 994.67292 | 3.094647 × 10−3 | |
WOA | 1.03243 | 49.54180 | 4.36880 | 1.16691 | 856.39004 | 2.511538 × 10−3 |
Identified Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
PV Module/Cell | Optimizer | ||||||||
RTC France | EBOA | 0.76080 | 1.40680 | 0.12566 | 1.81563 | 0.75151 | 0.03730 | 55.05508 | 7.478488 × 10−4 |
BOA | 0.76132 | 1.93167 | 0.99188 | 1.40295 | 0.12812 | 0.03793 | 46.86802 | 8.544780 × 10−4 | |
PSO | 0.76040 | 1.45675 | 0.17265 | 1.60314 | 0.31346 | 0.03562 | 66.27633 | 9.073320 × 10−4 | |
BA | 0.76066 | 1.89816 | 0.09667 | 1.49682 | 0.37219 | 0.03548 | 59.71745 | 8.648217 × 10−4 | |
SCA | 0.74824 | 1.56751 | 0.60294 | 1.71896 | 0.37346 | 0.02377 | 68.52579 | 1.219726 × 10−2 | |
STOA | 0.76630 | 1.71386 | 0.98691 | 1.37948 | 0.06311 | 0.03628 | 29.89405 | 4.074129 × 10−3 | |
WOA | 0.75960 | 1.77440 | 0.31112 | 1.47839 | 0.28799 | 0.03556 | 76.61059 | 1.073366 × 10−3 | |
STP6-120/36 | EBOA | 7.47353 | 44.55638 | 1.58944 | 47.20850 | 0.44263 | 0.16883 | 635.78665 | 1.427010 × 10−2 |
BOA | 7.46619 | 2.19263 | 0.00244 | 1116.41491 | 0.16899 | 45.31182 | 36.30835 | 1.442730 × 10−2 | |
PSO | 7.50724 | 47.10182 | 3.61314 | 46.19926 | 0.23003 | 0.17416 | 1025.82920 | 4.545994 × 10−2 | |
BA | 7.47602 | 38.00916 | 0.04711 | 50.00000 | 5.96205 | 0.16636 | 1499.96852 | 1.621662 × 10−2 | |
SCA | 7.47319 | 47.96793 | 0.10131 | 43.01288 | 1.00572 | 0.17905 | 415.98699 | 4.190054 × 10−2 | |
STOA | 7.49433 | 50.00000 | 7.10648 | 46.54970 | 0.78533 | 0.14783 | 1188.25439 | 2.904129 × 10−2 | |
WOA | 7.47328 | 49.24992 | 0.46384 | 44.46723 | 1.62315 | 0.16832 | 627.30669 | 1.451427 × 10−2 | |
PWP201 | EBOA | 1.03143 | 46.21139 | 0.05602 | 47.71761 | 2.63904 | 1.23296 | 822.95825 | 2.061273 × 10−3 |
BOA | 1.03284 | 46.68684 | 2.04592 | 49.41975 | 3.31756 | 1.26116 | 673.99531 | 2.132806 × 10−3 | |
PSO | 1.03164 | 45.46348 | 1.41689 | 43.46383 | 0.00102 | 1.17539 | 415.76347 | 8.264875 × 10−3 | |
BA | 1.03089 | 50.00000 | 0.00693 | 48.93449 | 3.74726 | 1.19242 | 959.83935 | 2.206877 × 10−3 | |
SCA | 1.05162 | 50.00000 | 0.00545 | 50.00000 | 4.83721 | 1.13918 | 294.41053 | 8.545024 × 10−3 | |
STOA | 1.03196 | 50.00000 | 4.87471 | 36.68460 | 0.00002 | 1.16122 | 895.55094 | 2.921392 × 10−3 | |
WOA | 1.03524 | 42.81119 | 0.25117 | 49.93793 | 2.86465 | 1.23859 | 574.93359 | 2.504610 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaib, L.; Tadj, M.; Choucha, A.; El-Rifaie, A.M.; Shaheen, A.M. Hybrid Brown-Bear and Hippopotamus Algorithms with Fractional Order Chaos Maps for Precise Solar PV Model Parameter Estimation. Processes 2024, 12, 2718. https://doi.org/10.3390/pr12122718
Chaib L, Tadj M, Choucha A, El-Rifaie AM, Shaheen AM. Hybrid Brown-Bear and Hippopotamus Algorithms with Fractional Order Chaos Maps for Precise Solar PV Model Parameter Estimation. Processes. 2024; 12(12):2718. https://doi.org/10.3390/pr12122718
Chicago/Turabian StyleChaib, Lakhdar, Mohammed Tadj, Abdelghani Choucha, Ali M. El-Rifaie, and Abdullah M. Shaheen. 2024. "Hybrid Brown-Bear and Hippopotamus Algorithms with Fractional Order Chaos Maps for Precise Solar PV Model Parameter Estimation" Processes 12, no. 12: 2718. https://doi.org/10.3390/pr12122718
APA StyleChaib, L., Tadj, M., Choucha, A., El-Rifaie, A. M., & Shaheen, A. M. (2024). Hybrid Brown-Bear and Hippopotamus Algorithms with Fractional Order Chaos Maps for Precise Solar PV Model Parameter Estimation. Processes, 12(12), 2718. https://doi.org/10.3390/pr12122718