Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Preparation
2.3. Characterization
2.4. Sorption Experiments
3. Results and Discussion
3.1. Elemental Analysis
3.2. XRD
3.3. Scanning Electron Microscopy
3.4. FTIR
3.5. N2 Adsorption/Desorption
3.6. Sorption of Methylene Blue
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alnasrawi, F.A.M.; Kareem, S.L.; Mohammed Saleh, L.A. Adsorption of methylene blue from aqueous solution using different types of activated carbon. J. Appl. Water Eng. Res. 2022, 11, 370–380. [Google Scholar] [CrossRef]
- Deepanraj, B.; Tirth, V.; Algahtani, A.; Elsehly, E.M. The performance of multi-walled carbon nanotubes-based filters with acid functionalization for enhanced methylene blue removal from water resources. Alex. Eng. J. 2024, 88, 310–316. [Google Scholar] [CrossRef]
- Solanki, B.S.; Lim, H.; Yoon, S.J.; Ham, H.C.; Park, H.S.; Lee, H.E.; Lee, S.H. Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition. Renew. Sustain. Energy Rev. 2025, 207, 114974. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Gao, X.; Ma, Q.; Zhang, J.; Zhao, T.-S.; Tsubaki, N. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins—A review. Environ. Res. 2024, 242, 117715. [Google Scholar] [CrossRef]
- Kwarteng, F.A.; Abdel-Aty, A.A.R.; Mohamed, S.R.E.; Hassan, M.A.; Ohashi, H.; López-Salas, N.; Semida, W.M.; Khalil, A.S.G. Novel onion flower-derived biochar for high-performance sustainable supercapacitor applications. Diam. Relat. Mater. 2024, 150, 111703. [Google Scholar] [CrossRef]
- Hayat, A.; Bashir, T.; Ahmed, A.M.; Ajmal, Z.; Alghamdi, M.M.; El-Zahhar, A.A.; Sohail, M.; Amin, M.A.; Al-Hadeethi, Y.; Ghasali, E.; et al. Novel 2D MBenes-synthesis, structure, properties with excellent performance in energy conversion and storage: A review. Mater. Sci. Eng. R Rep. 2024, 159, 100796. [Google Scholar] [CrossRef]
- Ewii, U.E.; Onugwu, A.L.; Nwokpor, V.C.; Akpaso, I.; Ogbulie, T.E.; Aharanwa, B.; Chijioke, C.; Verla, N.; Iheme, C.; Ujowundu, C.; et al. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. Nano Trans. Med. 2024, 3, 100042. [Google Scholar] [CrossRef]
- Luo, W.; Li, H.; Jin, M.; Liu, J.; Zhang, X.; Huang, G.; Zhou, T.; Lu, X. Organic frameworks (MOFs, COFs, and HOFs) based membrane materials for CO2 gas-selective separation: A systematic review. Sep. Purif. Technol. 2025, 357B, 130195. [Google Scholar] [CrossRef]
- Jareer, M.; Brijesh, K.; Safa, S.; Shahgaldi, S. The recent advancements in lithium-silicon alloy for next generation batteries: A review paper. J. Alloys Compd. 2025, 1010, 177124. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.Y.; Zhang, R.; Liu, C.J.; Liu, X.J.; Qiao, W.M.; Zhan, L.; Ling, L.C. Preparation of polystyrene-based activated carbon spheres and their adsorption of dibenzothiophene. New Carbon Mater. 2009, 24, 55–60. [Google Scholar] [CrossRef]
- Derbyshire, F.; Jagtoyen, M.; MAndrews, R.; Rao, A.; Martin-Guillon, I.; Grulke, E.A. Carbon Materials in Environmental Applications. In Chemistry and Physics of Carbon; Radovick, L.R., Ed.; Marcel Dekker: New York, NY, USA, 2000; pp. 1–66. [Google Scholar]
- Guo, P.; Gu, Y.; Lei, Z.; Cui, Y.; Zhao, X.S. Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors. Micropor. Mesopor. Mater. 2012, 156, 176–180. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Qiu, X.; Xu, C. Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts. EnergyChem. 2024, 6, 100133. [Google Scholar] [CrossRef]
- Armandi, M.; Bonelli, B.; Geobaldo, F.; Garrone, E. Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Micropor. Mesopor. Mater. 2010, 132, 414–420. [Google Scholar] [CrossRef]
- Singh, R.; Wang, L.; Cheng, J.; Sun, H.; Wu, C.; Huang, J. Synthesis of nitrogen-doped mesoporous carbon nanospheres using urea-phenol-formaldehyde resin for efficient CO2 adsorption–desorption studies. Carbon Capture Sci. Technol. 2024, 13, 100302. [Google Scholar] [CrossRef]
- Cui, X.J.; Antonietti, M.; Yu, S.H. Structural Effects of Iron Oxide Nanoparticles and Iron Ions on the Hydrothermal Carbonization of Starch and Rice Carbohydrates. Small 2006, 2, 756–759. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, W.; Wu, Y.; Dai, C.; Zhu, X.; Wang, Y.; Qin, J.; Chen, T. A highly efficient biomass based electrocatalyst for cathodic performance of lithium–oxygen batteries: Yeast derived hydrothermal carbon. Electrochim. Acta 2020, 349, 136411. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, J.; Zeng, J.; Tan, S. Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 2008, 10, 1067–1070. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Chen, L.; Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. [Google Scholar] [CrossRef]
- Gong, Y.T.; Wang, H.Y.; Wei, Z.Z.; Xie, L.; Wang, Y. An efficient way to introduce hierarchical structure into biomass-based hydrothermal carbonaceous materials. ACS Sustain. Chem. Eng. 2014, 2, 2435–2441. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Ouzzine, M.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical carbons: Synthesis, characterization and activation processes. Carbon 2014, 68, 296–307. [Google Scholar] [CrossRef]
- Wei, L.; Sevilla, M.; Fuertes, A.B.; Mokaya, R.; Yushin, G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 356–361. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D.J. High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675. [Google Scholar] [CrossRef]
- Deshmukh, A.A.; Mhlanga, S.D.; Coville, N.J. Carbon spheres. Mater. Sci. Eng. R 2010, 70, 1–28. [Google Scholar] [CrossRef]
- Sun, H.; Cao, L.; Lu, L. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550–562. [Google Scholar] [CrossRef]
- Ozcan, D.O.; Hendekci, M.C.; Ovez, B. Enhancing the adsorption capacity of organic and inorganic pollutants onto impregnated olive stone derived activated carbon. Heliyon 2024, 10, e032792. [Google Scholar] [CrossRef]
- Sahu, A.; Poler, J.C. Removal and degradation of dyes from textile industry wastewater: Benchmarking recent advancements, toxicity assessment and cost analysis of treatment processes. J. Environ. Chem. Eng. 2024, 12, 113754. [Google Scholar] [CrossRef]
- Munonde, T.S.; Madima, N.; Ratshiedana, R.; Nomngongo, P.N.; Mofokeng, L.E.; Dima, R.S. Synergistic adsorption-photocatalytic remediation of methylene blue dye from textile industry wastewater over NiFe LDH supported on tyre-ash derived activated carbon. Appl. Surf. Sci. 2025, 679, 161205. [Google Scholar] [CrossRef]
- Yamjala, M.; Nainar, M.S.; Ramisetti, N.R. Methods for the analysis of azo dyes employed in food industry—A review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Murmu, G.; Panigrahi, T.H.; Saha, S. Recent advances in the development of polyoxometalates and their composites for the degradation of toxic chemical dyes. Prog. Solid State Chem. 2024, 76, 100489. [Google Scholar] [CrossRef]
- Bhuyan, A.; Ahmaruzzaman, M. Recent advances in MOF-5-based photocatalysts for efficient degradation of toxic organic dyes in aqueous medium. Next Sustain. 2024, 3, 100016. [Google Scholar] [CrossRef]
- Xie, F.; Phillips, J.; Silva, I.F.; Palma, M.C.; Menendez, J.A. Microcalorimetric study of acid sites on ammonia- and acid-pretreated activated carbon. Carbon 2000, 38, 691–700. [Google Scholar] [CrossRef]
- Hu, C.C.; Wang, C.C. Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors. J. Power Sources 2004, 125, 299. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S.; Rangasamy, G. Hydrothermally produced activated carbon spheres from discarded maize cobs for efficient removal of rose bengal dye from water environment. Desal. Water Treat. 2024, 317, 100123. [Google Scholar] [CrossRef]
- Kamath, A.A.; Nayak, N.G.; Sagar, R.; Kamath, A.K. Hibiscus leaf petiole derived activated carbon as a potential sorbent for basic green 4 and reactive yellow 15 dye exclusion from aqueous solution. Inorg. Chem. Commun. 2024, 168, 112903. [Google Scholar] [CrossRef]
- Cherdoud, F.; Khelifi, S.; Reffas, A. Activated carbons developed from Algerian agro-waste of palm trunk fiber: Characterization and adsorptive capacity for azo dyes removal. Desal. Water Treat. 2023, 311, 118–134. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982; pp. 411–432. [Google Scholar]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Academic Press: London, UK, 1999; pp. 105–110. [Google Scholar]
- Hutson, N.D.; Yang, R.T. Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Horvath, G.; Kawazoe, K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 1983, 16, 470–475. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Kaneko, K.; Yamguchi, K.; Ishii, C.; Ozeki, S.; Hagi-Wara, S.; Suzuki, T. Size evaluation of graphitic crystallites in activated carbon fibers from diamagnetic susceptibility measurements. Chem. Phys. Lett. 1991, 176, 75–78. [Google Scholar] [CrossRef]
- Kaneko, K.; Ishii, C.; Kanoh, H.; Hanzawa, Y.; Setoyama, N.; Suzuki, T. Characterization of porous carbons with high resolution αs-analysis and low temperature magnetic susceptibility. Adv. Colloid Interface Sci. 1998, 76–77, 295–320. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2011; pp. 158–205. [Google Scholar] [CrossRef]
- Tucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.; El-Sayed, M.; Ramzi, M.; AbdelRaheem, O.H. Adsorption separation of condensate oil from produced water using ACTF prepared of oil palm leaves by batch and fixed bed techniques. Egypt. J. Pet. 2018, 27, 319–326. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, M.; Yadav, R.A. Vibrational studies of benzene, pyridine, pyridine-N-oxide and their cations. Spectrochim. Acta A 2013, 111, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Pathania, D.; Sharma, S.; Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 10, S1445–S1451. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J. Mater. Environ. Sci. 2018, 9, 1700–1711. [Google Scholar] [CrossRef]
Sample | C (%) | H (%) | O (%) |
---|---|---|---|
Fructose | 40 | 7 | 53 |
AC80 | 72 | 9 | 19 |
AC40 | 76 | 5 | 19 |
Sample | SBET (m 2/g) | Vtot (cm 3/g) | VDR (cm 3/g) | Vαs (cm 3/g) | E0 (kJ/mol) | Smic (m 2/g) | Sext (m 2/g) | Stot (m 2/g) |
---|---|---|---|---|---|---|---|---|
AC80 | 664 | 0.382 | 0.258 | 0.268 | 20.83 | 531 | 118 | 649 |
AC40 | 932 | 0.438 | 0.334 | 0.375 | 22.28 | 823 | 59 | 882 |
C0 (mg/dm 3) | 200 | 200 | 300 | 300 | 500 | 500 |
pH | 7 | 12 | 5 | 12 | 7 | 12 |
R2 | 0.996 | 0.999 | 0.999 | 0.999 | 0.991 | 0.990 |
qe (mg/g) | 148.81 | 200.00 | 123.00 | 227.79 | 150.60 | 500.00 |
k2 (g/mg min) | 0.00034 | 0.00758 | 0.00073 | 0.00154 | 0.00030 | 0.00120 |
h (mg/g min) | 7.53 | 303.20 | 11.04 | 79.91 | 6.80 | 300.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstić, S.S.; Čokeša, Đ.; Vujasin, R.T.; Kaluđerović, B.V.; Momčilović, M.Z.; Jaćimovski, D.; Gurikov, P.; Dodevski, V.M. Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose. Processes 2024, 12, 2683. https://doi.org/10.3390/pr12122683
Krstić SS, Čokeša Đ, Vujasin RT, Kaluđerović BV, Momčilović MZ, Jaćimovski D, Gurikov P, Dodevski VM. Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose. Processes. 2024; 12(12):2683. https://doi.org/10.3390/pr12122683
Chicago/Turabian StyleKrstić, Sanja S., Đuro Čokeša, Radojka T. Vujasin, Branka V. Kaluđerović, Milan Z. Momčilović, Darko Jaćimovski, Pavel Gurikov, and Vladimir M. Dodevski. 2024. "Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose" Processes 12, no. 12: 2683. https://doi.org/10.3390/pr12122683
APA StyleKrstić, S. S., Čokeša, Đ., Vujasin, R. T., Kaluđerović, B. V., Momčilović, M. Z., Jaćimovski, D., Gurikov, P., & Dodevski, V. M. (2024). Performance Analysis of Effective Methylene Blue Immobilization by Carbon Microspheres Obtained from Hydrothermally Processed Fructose. Processes, 12(12), 2683. https://doi.org/10.3390/pr12122683