Structural Performance Analysis and Optimization of Small Diesel Engine Exhaust Muffler
Abstract
:1. Introduction
2. Muffler Modeling and Test Verification
2.1. Test
2.1.1. Equipment
2.1.2. Method
2.1.3. Results
2.2. Simulation Analysis
2.2.1. Grid Division
2.2.2. Pressure Simulation
- (1)
- The structural walls of the muffler are assumed to be rigid with no-slip boundaries;
- (2)
- The fluid within the muffler chamber is considered to be an ideal gas, and the outer wall is adiabatic;
- (3)
- The physical parameters of the muffler are constant and invariant, and the influence of gravity is not considered.
2.2.3. Acoustic Simulation
2.2.4. Model Validation
2.3. Experimental Design
2.3.1. Data Sampling
2.3.2. Significance Analysis
2.4. Kriging
2.4.1. Model Definition
2.4.2. Response Surface
2.4.3. Accuracy Verification
3. Optimization
3.1. Multi-Objective Optimization
3.2. CMOPSO
3.3. Optimizing Case
4. Results and Discussion
5. Conclusions
- Using the optimized Latin hypercube sampling method helps us to identify the importance of multiple structural parameters on the muffler performance. Specifically, the parameters L2, L4, , and D2 significantly impact the performance indicators of the muffler. Therefore, prioritizing the optimization of these key parameters can simplify the model and enhance the overall efficiency of the optimization process.
- By establishing the Kriging model response surface, the influence of multiple structural parameters coupled on the muffler performance is revealed. Without changing the overall size of the exhaust muffler, reasonable adjustments of the structural parameters can improve the comprehensive performance of the muffler.
- The optimization results show that under the same rated working conditions, the pressure loss of the muffler decreased by about 134 Pa, and the average transmission loss within 0–3150 Hz increased by about 4.3 dB. Compared with MOPSO, the CMOPSO optimization result has a larger optimization range and better comprehensive performance.
- In the structural optimization design of the muffler, the ideal point method can more comprehensively explore the solution space and better evaluate the advantages and disadvantages of the different solutions. At the same time, decision-makers should consider the length of the internal structure of the muffler to ensure that the product achieves optimal overall performance. This paper can provide some ideas for the subsequent optimization design of the same type of mufflers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, B.; E, J.; Chen, J.; Zhang, F.; Ding, J. Effect of NH3/H2/O2 premixed combustion on energy conversion enhancement and NOx emission reduction of the segmented nozzle micro-combustor in thermophotovoltaic system. Renew. Energy 2024, 228, 120682. [Google Scholar] [CrossRef]
- E, J.; Zhou, H.; Kou, C.; Feng, C.; Zou, Z. Effect analysis on the hydrocarbon adsorption performance enhancement of the different zeolite molecular sieves in the gasoline engine under the cold start process. Energy 2024, 305, 132212. [Google Scholar] [CrossRef]
- Princess Okimiji, O.; Tochukwu Okafor, A.; Iyabo Fasona, M.; Atoro, T.; Akintayo Aborisade, M.; Nyandansobi Simon, J. Proliferation of noise pollution: Implication on health and community perception in coastal slums. Appl. Acoust. 2023, 214, 109713. [Google Scholar] [CrossRef]
- Alisah, M.I.; Ooi, L.-E.; Ripin, Z.M.; Yahaya, A.F.; Ho, K. Acoustic Attenuation Performance Analysis and Optimisation of Expansion Chamber Coupled Micro-perforated Cylindrical Panel Using Response Surface Method. Arch. Acoust. 2023, 46, 507–517. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Xue, Y.; Han, S. Local Structural Optimization Method Based on Orthogonal Analysis for a Resistant Muffler. IEEE Access 2021, 9, 40560–40569. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Wei, C.; Mi, Y. Analysis of coupling effect between chambers of reactive muffler. Appl. Acoust. 2022, 191, 108679. [Google Scholar] [CrossRef]
- Ouédraogo, B.; Maréchal, R.; Ville, J.M.; Perrey-Debain, E. Broadband noise reduction by circular multi-cavity mufflers operating in multimodal propagation conditions. Appl. Acoust. 2016, 107, 19–26. [Google Scholar] [CrossRef]
- Shi, Q.-Q.; Yang, Y.-Z.; Zhao, Z.; An, B.-W.; Tian, P.-Y.; Jiang, C.-C.; Deng, K.; Jia, H.; Yang, J. Research and design of broadband muffler based on second-order Helmholtz resonators. Acta Phys. Sin. 2022, 71, 234301. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, Z. Three-pass mufflers with perforated inlet/outlet tubes. Appl. Acoust. 2019, 156, 217–228. [Google Scholar] [CrossRef]
- Jang, G.W.; Lee, J.W. Optimal partition layout of expansion chamber muffler with offset inlet/outlet. Int. J. Automot. Technol. 2015, 16, 885–893. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, W.; Xu, M.; Wang, W.; Huang, Y. Study on the influence of structure factors of diesel engine exhaust purification muffler on transmission loss in different frequency bands. Appl. Acoust. 2021, 180, 108147. [Google Scholar] [CrossRef]
- Jun, F.; ZengFeng, Z.; Wei, C.; Hong, M.; JianXing, L. Computational fluid dynamics simulations of the flow field characteristics in a novel exhaust purification muffler of diesel engine. J. Low Freq. Noise Vib. Act. Control 2018, 37, 816–833. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, Z. Three-pass perforated tube muffler with perforated bulkheads. Adv. Mech. Eng. 2016, 8, 1687814016676767. [Google Scholar] [CrossRef]
- Denia, F.D.; Selamet, A.; Fuenmayor, F.J.; Kirby, R. Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. J. Sound Vib. 2007, 302, 1000–1017. [Google Scholar] [CrossRef]
- Liu, H.; Lin, J.; Hua, R.; Dong, L. Structural Optimization of a Muffler for a Marine Pumping System Based on Numerical Calculation. J. Mar. Sci. Eng. 2022, 10, 937. [Google Scholar] [CrossRef]
- Arslan, H.; Ranjbar, M.; Secgin, E.; Celik, V. Theoretical and experimental investigation of acoustic performance of multi-chamber reactive silencers. Appl. Acoust. 2020, 157, 106987. [Google Scholar] [CrossRef]
- Elsayed, A.; Bastien, C.; Jones, S.; Christensen, J.; Medina, H.; Kassem, H. Investigation of baffle configuration effect on the performance of exhaust mufflers. Case Stud. Therm. Eng. 2017, 10, 86–94. [Google Scholar] [CrossRef]
- Seçgin, E.; Arslan, H.; Birgören, B. A statistical design optimization study of a multi-chamber reactive type silencer using simplex centroid mixture design. J. Low Freq. Noise Vib. Act. Control 2020, 40, 623–638. [Google Scholar] [CrossRef]
- Xiang, L.; Zuo, S.; Zhang, M.; Hu, J.; Long, G. Study of micro-perforated tube mufflers with adjustable transmission loss. Proc. Mtgs. Acoust. 2013, 20, 030002. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, G.; Zhu, C.; Shi, M.; Hu, J.; Luo, G. Ventilation barrier with space-coiling channels of varying cross-section for broadband sound insulation. Appl. Acoust. 2022, 201, 109110. [Google Scholar] [CrossRef]
- Gao, C.; Hu, C.; Mei, J.; Hou, B.; Zhang, X.; Du, Z.; Wen, W. Barrier-free duct muffler for low-frequency sound absorption. Front. Mater. 2022, 9, 991959. [Google Scholar] [CrossRef]
- Fang, Z.; Ji, Z.L.; Liu, C.Y. Acoustic attenuation analysis of silencers with multi-chamber by using coupling method based on subdomain division technique. Appl. Acoust. 2017, 116, 152–163. [Google Scholar] [CrossRef]
- Oh, K.S.; Lee, J.W. Topology optimization for enhancing the acoustical and thermal characteristics of acoustic devices simultaneously. J. Sound Vib. 2017, 401, 54–75. [Google Scholar] [CrossRef]
- Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin hypercube sampling for structural reliability analysis. Struct. Saf. 2003, 25, 47–68. [Google Scholar] [CrossRef]
- Viana, F.A.C. A Tutorial on Latin Hypercube Design of Experiments. Qual. Reliab. Eng. Int. 2016, 32, 1975–1985. [Google Scholar] [CrossRef]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef]
- Barbieri, R.; Barbieri, N.; de Lima, K.F. Some applications of the PSO for optimization of acoustic filters. Appl. Acoust. 2015, 89, 62–70. [Google Scholar] [CrossRef]
- Lu, C.; Chen, W.; Liu, Z.; Du, S.; Zhu, Y. Pilot study on compact wideband micro-perforated muffler with a serial-parallel coupling mode. Appl. Acoust. 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Zuo, S.; Wei, K.; Wu, X. Multi-objective Optimization of a Multi-chamber Perforated Muffler Using an Approximate Model and Genetic Algorithm. Int. J. Acoust. Vib. 2016, 21, 152–163. [Google Scholar] [CrossRef]
- Wang, T.; Gao, J.; Bu, Y. Performance Analysis of Improved Vehicle Muffler. Mechanics 2018, 24, 751–756. [Google Scholar] [CrossRef]
- Chiu, M.-C.; Chang, Y.-C.; Wu, M.-R. Numerical Assessment of Automotive Mufflers Using FEM, Neural Networks, and a Genetic Algorithm. Arch. Acoust. 2023, 43, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Altabey, W.A.; Noori, M.; Wu, Z.; Al-Moghazy, M.A.; Kouritem, S.A. Studying Acoustic Behavior of BFRP Laminated Composite in Dual-Chamber Muffler Application Using Deep Learning Algorithm. Materials 2022, 15, 8071. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-l.; Gao, F.; Huang, X.-y.; Huang, C.; Li, J. Numerical optimization of flow noises for mufflers based on the improved BP neural network. J. Vibroeng. 2016, 18, 2626–2640. [Google Scholar] [CrossRef]
- Ahmadian, H.; Najafi, G.; Ghobadian, B.; Reza Hassan-Beygi, S.; Bastiaans, R.J.M. Analytical and numerical modeling, sensitivity analysis, and multi-objective optimization of the acoustic performance of the herschel-quincke tube. Appl. Acoust. 2021, 180, 108096. [Google Scholar] [CrossRef]
- JB/T9869-2020; Exhaust Silencers of Internal Combustion for Construction Machinery. China Machine Press: Beijing, China, 2021.
- Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput. Chem. Eng. 2018, 108, 250–267. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Cheng, R.; Qiu, J.; Jin, Y. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 2018, 427, 63–76. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Total length of cavity, L/mm | 300 |
The length of chamber 1, L1/mm | 140 |
The length of chamber 2, L2/mm | 90 |
The length of chamber 3, L3/mm | 70 |
Intake cannula diameter, L4/mm | 60 |
Diameter of the cavity, D/mm | 80 |
Diameter of the intake pipe, D1/mm | 20 |
Diameter of parallel insertion tube, D2/mm | 12.5 |
Diameter of perforation, D3/mm | 2 |
Diameter of the exhaust pipe, D4/mm | 20 |
Diameter of perforations in the perforated plate, D5/mm | 10 |
Thickness of porous clapboard /mm | 1 |
Thickness of cavity, /mm | 2 |
Perforating rate, /% | 15 |
Design Variable | Initial Value/mm | Boundary Value/mm | |
---|---|---|---|
Lower Limit | Upper Limit | ||
L1 | 140 | 130 | 150 |
L2 | 90 | 60 | 120 |
L4 | 60 | 30 | 90 |
D2 | 12.5 | 10 | 15 |
D4 | 20 | 15 | 25 |
15 | 5 | 25 | |
2 | 1 | 3 |
Symbol | L2/mm | L4/mm | /% | D4/mm | n1/Pa | n2/Pa | m1/dB | m2/dB | |
---|---|---|---|---|---|---|---|---|---|
1 | 116.92 | 50.46 | 16.79 | 10.90 | 1146 | 1173 | 33.4 | 34.5 | 2.3% |
2 | 103.08 | 30.00 | 11.67 | 14.10 | 973 | 995 | 35.4 | 35.8 | 1.7% |
3 | 72.31 | 33.08 | 14.74 | 13.85 | 980 | 965 | 34.9 | 36.2 | 3.3% |
4 | 83.08 | 74.62 | 6.54 | 13.85 | 929 | 948 | 24.6 | 23.8 | 2.7% |
5 | 86.15 | 88.46 | 19.87 | 11.28 | 1145 | 1091 | 28.3 | 26.9 | 4.9% |
TL | PL | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
Error | 0.05495 | 0.96797 | 0.09451 | 0.90354 |
Parameter | L2/mm | L4/mm | /% | D4/mm |
---|---|---|---|---|
Initial | 90 | 60 | 15 | 12.5 |
Lower limit | 60 | 30 | 5 | 10 |
Upper limit | 120 | 90 | 25 | 15 |
NO. | 1. Original | MOPSO | CMOPSO | ||
---|---|---|---|---|---|
2. Weighted Sum (0.5TLA + 0.5PL) | 3. Ideal Point | 4. Weighted Sum (0.5TLA + 0.5PL) | 5. Ideal Point | ||
L2 (mm) L4 (mm) (%) D2 (mm) PL (Pa) | 90 | 101.5 | 98.2 | 107.5 | 112.4 |
60 | 80.1 | 76.3 | 84.3 | 71.5 | |
15 | 7.4 | 7.2 | 8.1 | 7.6 | |
12.5 | 13.6 | 13.5 | 13.2 | 13.8 | |
1087 | 955 | 957 | 956 | 954 | |
TLA (dB) | 27.3 | 31.3 | 30.9 | 31.1 | 31.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yuan, W.; Ma, Y.; Fu, J. Structural Performance Analysis and Optimization of Small Diesel Engine Exhaust Muffler. Processes 2024, 12, 2186. https://doi.org/10.3390/pr12102186
Li F, Yuan W, Ma Y, Fu J. Structural Performance Analysis and Optimization of Small Diesel Engine Exhaust Muffler. Processes. 2024; 12(10):2186. https://doi.org/10.3390/pr12102186
Chicago/Turabian StyleLi, Fang, Wenhua Yuan, Yi Ma, and Jun Fu. 2024. "Structural Performance Analysis and Optimization of Small Diesel Engine Exhaust Muffler" Processes 12, no. 10: 2186. https://doi.org/10.3390/pr12102186
APA StyleLi, F., Yuan, W., Ma, Y., & Fu, J. (2024). Structural Performance Analysis and Optimization of Small Diesel Engine Exhaust Muffler. Processes, 12(10), 2186. https://doi.org/10.3390/pr12102186