Application of AFM on Identifying Mechanical Properties of Individual Minerals and Surface Properties of Crack with High Resolution in Shale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Information and Preparation
2.2. Experiment Positioning Method
2.3. PeakForce QNM Mode and Contact Mode
3. Results and Discussions
3.1. Identification of Mechanical Properties of Individual Minerals in Shale by AFM
3.2. Crack Morphology Measurement
3.3. Elastic Mechanical Properties of Mineral Layers around Crack
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papanastasiou, P. The influence of plasticity in hydraulic fracturing. Int. J. Fract. 1997, 84, 61–79. [Google Scholar] [CrossRef]
- Van Dam, D.; Papanastasiou, P.; De Pater, C. Impact of rock plasticity on hydraulic fracture propagation and closure. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 1–4 October 2000. [Google Scholar]
- Constantinides, G.; Ravi Chandran, K.S.; Ulm, F.J.; Van Vliet, K.J. Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng. A 2006, 430, 189–202. [Google Scholar] [CrossRef]
- Bobko, C.; Ulm, F.-J. The nano-mechanical morphology of shale. Mech. Mater. 2008, 40, 318–337. [Google Scholar] [CrossRef]
- Deirieh, A.; Ortega, J.A.; Ulm, F.J.; Abousleiman, Y. Nanochemomechanical assessment of shale: A coupled WDS-indentation analysis. Acta Geotech. 2012, 7, 271–295. [Google Scholar] [CrossRef]
- Li, C.; Ostadhassan, M.; Kong, L.; Bubach, B. Multi-scale assessment of mechanical properties of organic-rich shales: A coupled nanoindentation, deconvolution analysis, and homogenization method. J. Pet. Sci. Eng. 2019, 174, 80–91. [Google Scholar] [CrossRef]
- Xu, J.; Tang, X.; Wang, Z.; Feng, Y.; Bian, K. Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations. Eng. Geol. 2020, 277, 105801. [Google Scholar] [CrossRef]
- Klein, E.; Baud, P.; Reuschlé, T.; Wong, T.F. Mechanical behaviour and failure mode of bentheim sandstone under triaxial compression. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 21–25. [Google Scholar] [CrossRef]
- Abousleiman, Y.N.; Tran, M.H.; Hoang, S.; Bobko, C.P.; Ortega, A.; Ulm, F.-J. Geomechanics Field and Laboratory Characterization of the Woodford Shale: The Next Gas Play. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 1 January 2007; p. 14. [Google Scholar]
- Wu, Y.; Li, X.; He, J.; Zheng, B. Mechanical Properties of Longmaxi Black Organic-Rich Shale Samples from South China under Uniaxial and Triaxial Compression States. Energies 2016, 9, 1088. [Google Scholar] [CrossRef]
- Wu, J.; Wong, H.S.; Yin, Q.; Ma, D. Effects of aggregate strength and mass fraction on mesoscopic fracture characteristics of cemented rockfill from gangue as recycled aggregate. Compos. Struct. 2023, 311, 116851. [Google Scholar] [CrossRef]
- Wu, J.; Jing, H.; Gao, Y.; Meng, Q.; Yin, Q.; Du, Y. Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill. Cem. Concr. Compos. 2022, 127, 104408. [Google Scholar] [CrossRef]
- Javadpour, F.; Moravvej Farshi, M.; Amrein, M. Atomic-Force Microscopy: A New Tool for Gas-Shale Characterization. J. Can. Pet. Technol. 2012, 51, 236–243. [Google Scholar] [CrossRef]
- Eliyahu, M.; Emmanuel, S.; Day-Stirrat, R.J.; Macaulay, C.I. Mechanical properties of organic matter in shales mapped at the nanometer scale. Mar. Pet. Geol. 2015, 59, 294–304. [Google Scholar] [CrossRef]
- Li, C.; Ostadhassan, M.; Kong, L. Nanochemo-mechanical characterization of organic shale through AFM and EDS. In Proceedings of the SEG Technical Program Expanded Abstracts 2017, Houston, TX, USA, 28 September 2017; pp. 3837–3840. [Google Scholar]
- Yang, J.; Hatcherian, J.; Hackley, P.C.; Pomerantz, A.E. Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 2017, 8, 2179. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ostadhassan, M.; Gentzis, T.; Kong, L.; Carvajal-Ortiz, H.; Bubach, B. Nanomechanical characterization of organic matter in the Bakken formation by microscopy-based method. Mar. Pet. Geol. 2018, 96, 128–138. [Google Scholar] [CrossRef]
- Tian, S.; Dong, X.; Wang, T.; Zhang, R.; Zhang, P.; Sheng, M.; Cheng, S.; Zhao, H.; Fei, L.; Street, J.; et al. Surface Properties of Organic Kerogen in Continental and Marine Shale. Langmuir 2018, 34, 13882–13887. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, T.; Li, G.; Sheng, M.; Zhang, P. Nanoscale Surface Properties of Organic Matter and Clay Minerals in Shale. Langmuir 2019, 35, 5711–5718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Pan, Z.; Tong, W. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 2020, 260, 116352. [Google Scholar] [CrossRef]
- Chen, F.; Zheng, Q.; Ding, X.; Lu, S.; Zhao, H. Pore size distributions contributed by OM, clay and other minerals in over-mature marine shale: A case study of the Longmaxi shale from Southeast Chongqing, China. Mar. Pet. Geol. 2020, 122, 104679. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326. [Google Scholar] [CrossRef]
- Cheng, S.; Sheng, M.; Chen, Z.; Tian, S.; Li, G. Identification of Shale Bedding Layers from Micromechanical Evaluation. In Proceedings of the SPE Annual Technical Conference and Exhibition 2021, ATCE 2021, Dubai, United Arab Emirates, 21–23 September 2021. [Google Scholar]
Sample | Quartz | Feldspar | Calcite | Dolomite | Pyrite | Clay | TOC | Depth/m |
---|---|---|---|---|---|---|---|---|
Shale | 31.2 | 10.4 | 8.5 | 7.5 | 3.1 | 39.3 | 1.11 | 2502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Sheng, M.; Xu, P. Application of AFM on Identifying Mechanical Properties of Individual Minerals and Surface Properties of Crack with High Resolution in Shale. Processes 2023, 11, 2498. https://doi.org/10.3390/pr11082498
Cheng S, Sheng M, Xu P. Application of AFM on Identifying Mechanical Properties of Individual Minerals and Surface Properties of Crack with High Resolution in Shale. Processes. 2023; 11(8):2498. https://doi.org/10.3390/pr11082498
Chicago/Turabian StyleCheng, Shizhong, Mao Sheng, and Peng Xu. 2023. "Application of AFM on Identifying Mechanical Properties of Individual Minerals and Surface Properties of Crack with High Resolution in Shale" Processes 11, no. 8: 2498. https://doi.org/10.3390/pr11082498
APA StyleCheng, S., Sheng, M., & Xu, P. (2023). Application of AFM on Identifying Mechanical Properties of Individual Minerals and Surface Properties of Crack with High Resolution in Shale. Processes, 11(8), 2498. https://doi.org/10.3390/pr11082498