Leaching Kinetics of Y and Eu from Waste Phosphors under Microwave Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Phosphors
2.2. Experimental Methods
2.3. Equipment and Reagents
3. Results
3.1. Effect of Microwave Power on the Leaching Rates of Y and Eu
3.2. The Effect of Reaction Time and Temperature on the Leaching Rates of Y and Eu
3.3. Effect of the HCl Concentration and H2O2 Addition on Leaching Rates of Y and Eu
3.4. The Effect of Liquid-Solid Ratio on the Leaching Rate of Y and Eu
4. The Kinetic Model of the Leaching Reaction
4.1. The Leaching Reaction Apparent Activation Energy of Y and Eu
4.2. Comparison of Microwave Leaching and Conventional Leaching
4.3. Phase Changes of Waste Phosphors before and after Leaching
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tunsu, C.; Petranikova, M.; Gergori, M. Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 2015, 156, 239–258. [Google Scholar] [CrossRef]
- Hatch, G.P. Dynamics in the Global Market for Rare Earths. Elements 2012, 8, 341–346. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Wu, Y.; Yin, X.; Zhang, Q.; Wang, W.; Mu, X. The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resour. Conserv. Recycl. 2014, 88, 21–31. [Google Scholar] [CrossRef]
- Tang, Y.B.; Zhu, X.Z.; Wang, H.B.; Qi, F.X. Progress in research on barium magnesium aluminate. Mater. Rev. 2006, 20, 335–338. [Google Scholar]
- Ippolito, N.M.; Innocenzi, V.; Michelis, I.D.; Medici, F.; Vegliò, F. Rare earth elements recovery from fluorescent lamps: A new thermal pretreatment to improve the efficiency of the hydrometallurgical process. J. Clean. Prod. 2017, 153, 287–298. [Google Scholar] [CrossRef]
- Yu, M.M.; Pang, S.Y.; Mei, G.J.; Chen, X.D. Recovering Y and Eu from Waste Phosphors Using Chlorination Roasting—Water Leaching Process. Minerals 2016, 6, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Jiang, X.; Mei, G.; Chen, X. Leaching kinetic study of Y and Eu from waste phosphors using hydrochloric acid solution containing hydrogen peroxide. Physicochem. Probl. Miner. Process. 2018, 54, 238–248. [Google Scholar]
- Tunsu, C.; Petranikova, M.; Ekberg, C.; Retegan, T. A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep. Purif. Technol. 2016, 161, 172–186. [Google Scholar] [CrossRef]
- Yin, X.; Tian, X.; Wu, Y. Recycling rare earth elements from waste cathode ray tube phosphors: Experimental study and mechanism analysis. J. Clean. Prod. 2018, 205, 58–66. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, Y.; Xiao, Q.; Ma, Q.; Kang, S.; Li, H.; Song, S. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results Phys. 2017, 7, 2594–2600. [Google Scholar] [CrossRef]
- Liu, C.; Ju, S.H.; Zhang, L.B. Recovery of valuable metals from jarosite by sulphuric acid roasting using microwave and water leaching. Can. Metall. Q. 2016, 56, 1–9. [Google Scholar]
- Cecilia, R.; Kunz, U.; Turek, T. Possibilities of process intensification using microwaves applied to catalytic microreactors. Chem. Eng. Process. 2007, 46, 870–881. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. Engl. 2010, 43, 6250–6284. [Google Scholar] [CrossRef]
- Laubertova, M.; Havlik, T.; Parilak, L.; Derin, B.; Trpcevska, J. The effects of microwave-assisted leaching on the treatment of electric arc furnace dusts (EAFD). Arch. Metall. Mater. 2020, 65, 321–328. [Google Scholar]
- Lie, J.; Liu, J. Recovery of Y and Eu from waste CRT phosphor using closed-vessel microwave leaching. Sep. Purif. Technol. 2021, 227, 119448. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Pan, L. Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite. Hydrometallurgy 2010, 100, 172–176. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method. JOM 2018, 70, 1031–1036. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, T.; Liu, J. Decomposition of the mixed rare earth concentrate by microwave-assisted method. J. Rare Earths 2016, 34, 529–535. [Google Scholar] [CrossRef]
- Le, T.; Li, X.; Ravindra, A.V.; Wang, Q.; Peng, J.; Ju, S. Leaching behavior of contaminant metals from spent FCC catalyst under microwave irradiation. Mater. Res. Express 2018, 6, 035509. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering; Wiley: New York, NY, USA, 1972; pp. 361–371. [Google Scholar]
Component | Y2O3 | Al2O3 | BaO | CeO2 | MgO | Eu2O3 | Tb4O7 | MnO | P2O5 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 39.80 | 36.63 | 7.62 | 4.53 | 2.15 | 3.14 | 2.16 | 0.157 | 1.38 |
Component | SrO | Cl | Ag2O | Na2O | ZrO2 | CdO | SO3 | Fe2O3 | CaO |
Content (%) | 1.06 | 0.0524 | 0.0491 | 0.0479 | 0.0446 | 0.0291 | 0.0281 | 0.0185 | 0.0858 |
T (K) | Correlation Value (R2) | |||||
---|---|---|---|---|---|---|
Y | Eu | |||||
1 − (1 − x)(1/3) | 1 − (2/3)x − (1 − x)(2/3) | 1/3ln(1 − x) + (1 − x)−(1/3) | 1 − (1 − x)(1/3) | 1 − (2/3)x − (1 − x)(2/3) | 1/3ln(1 − x) + (1 − x)−1/3 | |
323 | 0.9922 | 0.9401 | 0.8773 | 0.9969 | 0.8744 | 0.7023 |
333 | 0.9980 | 0.9575 | 0.8656 | 0.9971 | 0.8827 | 0.6769 |
343 | 0.9917 | 0.9470 | 0.6681 | 0.9948 | 0.8869 | 0.6753 |
353 | 0.9921 | 0.7851 | 0.6938 | 0.9963 | 0.8124 | 0.6597 |
363 | 0.9958 | 0.9825 | 0.7362 | 0.9952 | 0.7469 | 0.6232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Yu, M.; Zhao, Y.; Cheng, M.; Mei, G. Leaching Kinetics of Y and Eu from Waste Phosphors under Microwave Irradiation. Processes 2023, 11, 1939. https://doi.org/10.3390/pr11071939
Yang D, Yu M, Zhao Y, Cheng M, Mei G. Leaching Kinetics of Y and Eu from Waste Phosphors under Microwave Irradiation. Processes. 2023; 11(7):1939. https://doi.org/10.3390/pr11071939
Chicago/Turabian StyleYang, Delong, Mingming Yu, Yunqi Zhao, Mingyu Cheng, and Guangjun Mei. 2023. "Leaching Kinetics of Y and Eu from Waste Phosphors under Microwave Irradiation" Processes 11, no. 7: 1939. https://doi.org/10.3390/pr11071939
APA StyleYang, D., Yu, M., Zhao, Y., Cheng, M., & Mei, G. (2023). Leaching Kinetics of Y and Eu from Waste Phosphors under Microwave Irradiation. Processes, 11(7), 1939. https://doi.org/10.3390/pr11071939