Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Methods
3. Results and Discussions
3.1. Performance of Classification Methods after Oversampling
3.2. Performance of Classification Methods Based on Dimension Reduction Techniques
3.3. Performance of Classification Methods Based on Classifier-Based Gene Ranking and Selection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, T.; Batra, I.; Luthra, M.; Vimal, S.; Dhiman, G.; Malik, A.; Shabaz, M. Gene expression-assisted cancer prediction techniques. J. Healthc. Eng. 2021, 2021, 4242646. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, P.; Kolhe, R.; Gahlay, G.K. The clinical relevance of gene expression based prognostic signatures in colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188513. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, E.; Fugle, C.M.; Wang, X.; Cheng, C. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br. J. Cancer 2021, 125, 422–432. [Google Scholar] [CrossRef]
- Tourang, M.; Fang, L.; Zhong, Y.; Suthar, R.C. Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cell. Mol. Biomed. Rep. 2021, 1, 7–13. [Google Scholar] [CrossRef]
- Satyananda, V.; Oshi, M.; Endo, I.; Takabe, K. High BRCA2 gene expression is associated with aggressive and highly proliferative breast cancer. Ann. Surg. Oncol. 2021, 28, 7356–7365. [Google Scholar] [CrossRef]
- Qian, Y.; Daza, J.; Itzel, T.; Betge, J.; Zhan, T.; Marmé, F.; Teufel, A. Prognostic cancer gene expression signatures: Current status and challenges. Cells 2021, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Munkácsy, G.; Santarpia, L.; Győrffy, B. Gene Expression Profiling in Early Breast Cancer—Patient Stratification Based on Molecular and Tumor Microenvironment Features. Biomedicines 2022, 10, 248. [Google Scholar] [CrossRef]
- Oliveira, L.J.C.; Amorim, L.C.; Megid, T.B.C.; De Resende, C.A.A.; Mano, M.S. Gene expression signatures in early Breast Cancer: Better together with clinicopathological features. Crit. Rev. Oncol. Hematol. 2022, 175, 103708. [Google Scholar] [CrossRef]
- Schettini, F.; Chic, N.; Brasó-Maristany, F.; Paré, L.; Pascual, T.; Conte, B.; Martínez-Sáez, O.; Adamo, B.; Vidal, M.; Barnadas, E.; et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast Cancer 2021, 7, 1. [Google Scholar] [CrossRef]
- Zhong, Y.; Chalise, P.; He, J. Nested cross-validation with ensemble feature selection and classification model for high-dimensional biological data. Commun. Stat. Simul. Comput. 2023, 52, 110–125. [Google Scholar] [CrossRef]
- Petinrin, O.O.; Saeed, F.; Li, X.; Ghabban, F.; Wong, K.C. Reactions’ descriptors selection and yield estimation using metaheuristic algorithms and voting ensemble. Comput. Mater. Contin. 2022, 70, 4745–4762. [Google Scholar]
- Hameed, S.S.; Petinrin, O.O.; Hashi, A.O.; Saeed, F. Filter-wrapper combination and embedded feature selection for gene expression data. Int. J. Adv. Soft Compu. Appl. 2018, 10, 90–105. [Google Scholar]
- Townes, F.W.; Hicks, S.C.; Aryee, M.J.; Irizarry, R.A. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol. 2019, 20, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, I.; Jain, V.K.; Jain, R. Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl. Soft Comput. 2018, 62, 203–215. [Google Scholar] [CrossRef]
- Kabir, M.F.; Chen, T.; Ludwig, S.A. A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction. Healthc. Anal. 2023, 3, 100125. [Google Scholar] [CrossRef]
- Prasad, Y.; Biswas, K.; Hanmandlu, M. A recursive PSO scheme for gene selection in microarray data. Appl. Soft Comput. 2018, 71, 213–225. [Google Scholar] [CrossRef]
- Sharbaf, F.V.; Mosafer, S.; Moattar, M.H. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 2016, 107, 231–238. [Google Scholar] [CrossRef]
- Alhenawi, E.A.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Improved intelligent water drop-based hybrid feature selection method for microarray data processing. Comput. Biol. Chem. 2023, 103, 107809. [Google Scholar] [CrossRef]
- Keshta, I.; Deshpande, P.S.; Shabaz, M.; Soni, M.; Bhadla, M.K.; Muhammed, Y. Multi-stage biomedical feature selection extraction algorithm for cancer detection. SN Appl. Sci. 2023, 5, 131. [Google Scholar] [CrossRef]
- Sayed, S.; Nassef, M.; Badr, A.; Farag, I. A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst. Appl. 2019, 121, 233–243. [Google Scholar] [CrossRef]
- Li, X.; Wang, H. On Mean-Optimal Robust Linear Discriminant Analysis. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 30 November–3 December 2022; pp. 1047–1052. [Google Scholar]
- Li, X.; Wang, H. Adaptive Principal Component Analysis. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), Alexandria, VA, USA, 28–30 April 2022; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2022; pp. 486–494. [Google Scholar]
- Jiang, J.; Xu, J.; Liu, Y.; Song, B.; Guo, X.; Zeng, X.; Zou, Q. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder. Briefings Bioinform. 2023, 24, bbad152. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.S.; Muhammad, F.F.; Hassan, R.; Saeed, F. Gene Selection and Classification in Microarray Datasets using a Hybrid Approach of PCC-BPSO/GA with Multi Classifiers. J. Comput. Sci. 2018, 14, 868–880. [Google Scholar] [CrossRef] [Green Version]
- Dettling, M.; Bühlmann, P. Supervised clustering of genes. Genome Biol. 2002, 3, research0069.1. [Google Scholar] [CrossRef]
- Alon, U.; Barkai, N.; Notterman, D.A.; Gish, K.; Ybarra, S.; Mack, D.; Levine, A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 1999, 96, 6745–6750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Ong, Y.S.; Dash, M. Markov Blanket-Embedded Genetic Algorithm for Gene Selection. Pattern Recognit. 2007, 49, 3236–3248. [Google Scholar] [CrossRef]
- Microarray Datasets. Available online: https://csse.szu.edu.cn/staff/zhuzx/Datasets.html (accessed on 8 June 2023).
- Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudoit, S.; Fridlyand, J.; Speed, T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 2002, 97, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Uriarte, R.; De Andres, S.A. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. In Proceedings of the Fifth International Workshop on Computational Intelligence & Applications, IEEE SMC Hiroshima Chapter, Hiroshima, Japan, 10–12 November 2009. [Google Scholar]
Dataset | Classes | Instances | Attributes |
---|---|---|---|
Brain | 5 | 42 | 5598 |
Colon | 2 | 62 | 2001 |
Leukemia | 2 | 72 | 3572 |
Lymphoma | 3 | 62 | 4027 |
Prostate | 2 | 102 | 6034 |
SBRCT | 4 | 63 | 2309 |
Method | SVMSMOTE STATUS | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | 0.8167 | 0.8872 | 0.9857 | 1.0000 | 0.9110 | 0.9846 | |
With | 0.8667 | 0.9000 | 0.9895 | 0.9909 | 0.9229 | 0.9889 | |
RF | 0.7444 | 0.8410 | 0.9457 | 1.0000 | 0.8910 | 0.9846 | |
With | 0.8444 | 0.9250 | 0.9895 | 1.0000 | 0.8943 | 0.9889 | |
SVM | 0.6750 | 0.8564 | 0.9857 | 1.0000 | 0.8714 | 0.8897 | |
With | 0.7600 | 0.9125 | 1.0000 | 1.0000 | 0.9038 | 0.9234 | |
GBC | 0.6383 | 0.7646 | 0.8486 | 0.9833 | 0.8818 | 0.8297 | |
With | 0.6111 | 0.8000 | 0.8957 | 0.9814 | 0.8762 | 0.8457 | |
GNB | 0.6417 | 0.8551 | 0.9724 | 0.9167 | 0.6371 | 0.9205 | |
With | 0.6311 | 0.8625 | 1.0000 | 0.9909 | 0.6057 | 0.9778 | |
KNN | 0.6972 | 0.7923 | 0.9305 | 0.9846 | 0.8614 | 0.7744 | |
With | 0.7800 | 0.8750 | 0.8830 | 0.9727 | 0.8552 | 0.8146 |
Method | SVMSMOTE STATUS | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | 0.7783 | 0.8737 | 0.9889 | 1.0000 | 0.9178 | 0.9929 | |
With | 0.8567 | 0.9056 | 0.9909 | 0.9905 | 0.9324 | 0.9929 | |
RF | 0.6433 | 0.8304 | 0.9556 | 1.0000 | 0.9053 | 0.9929 | |
With | 0.8567 | 0.9362 | 0.9909 | 1.0000 | 0.9013 | 0.9929 | |
SVM | 0.5483 | 0.8438 | 0.9889 | 1.0000 | 0.8757 | 0.8625 | |
With | 0.8033 | 0.9249 | 1.0000 | 1.0000 | 0.9086 | 0.9200 | |
GBC | 0.5615 | 0.7007 | 0.8378 | 0.9905 | 0.8920 | 0.7827 | |
With | 0.6340 | 0.8144 | 0.8956 | 0.9771 | 0.8836 | 0.8552 | |
GNB | 0.6225 | 0.8421 | 0.9746 | 0.9016 | 0.6630 | 0.9125 | |
With | 0.6080 | 0.8706 | 1.0000 | 0.9917 | 0.6305 | 0.9762 | |
KNN | 0.5258 | 0.7814 | 0.9139 | 0.9833 | 0.8669 | 0.8177 | |
With | 0.6367 | 0.9072 | 0.9043 | 0.9742 | 0.8545 | 0.7935 |
Method | SVMSMOTE STATUS | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | 0.7850 | 0.8873 | 0.9833 | 1.0000 | 0.9048 | 0.9750 | |
With | 0.8750 | 0.8978 | 0.9889 | 0.9944 | 0.9149 | 0.9833 | |
RF | 0.7150 | 0.8339 | 0.9500 | 1.0000 | 0.8923 | 0.9875 | |
With | 0.8617 | 0.9246 | 0.9889 | 1.0000 | 0.8918 | 0.9833 | |
SVM | 0.6567 | 0.8506 | 0.9833 | 1.0000 | 0.8690 | 0.8564 | |
With | 0.8017 | 0.9103 | 1.0000 | 1.0000 | 0.8995 | 0.9324 | |
GBC | 0.5473 | 0.7208 | 0.8739 | 0.9778 | 0.8784 | 0.7939 | |
With | 0.6283 | 0.8016 | 0.8958 | 0.9849 | 0.8733 | 0.8501 | |
GNB | 0.6283 | 0.8530 | 0.9722 | 0.8533 | 0.6405 | 0.8806 | |
With | 0.7167 | 0.8585 | 1.0000 | 0.9926 | 0.6167 | 0.9733 | |
KNN | 0.6400 | 0.7796 | 0.9444 | 0.9926 | 0.8606 | 0.8025 | |
With | 0.7567 | 0.8714 | 0.8888 | 0.9778 | 0.8474 | 0.8097 |
Method | SVMSMOTE STATUS | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | 0.7480 | 0.8736 | 0.9850 | 1.0000 | 0.9079 | 0.9795 | |
With | 0.8427 | 0.8978 | 0.9894 | 0.9920 | 0.9185 | 0.9862 | |
RF | 0.6467 | 0.8228 | 0.9450 | 1.0000 | 0.8895 | 0.9890 | |
With | 0.8307 | 0.9232 | 0.9894 | 1.0000 | 0.8904 | 0.9862 | |
SVM | 0.5610 | 0.8405 | 0.9850 | 1.0000 | 0.8695 | 0.8448 | |
With | 0.7573 | 0.9097 | 1.0000 | 1.0000 | 0.8996 | 0.9149 | |
GBC | 0.5288 | 0.6944 | 0.8205 | 0.9815 | 0.8776 | 0.7674 | |
With | 0.5730 | 0.7979 | 0.8898 | 0.9794 | 0.8715 | 0.8394 | |
GNB | 0.5793 | 0.8408 | 0.9715 | 0.8608 | 0.6310 | 0.8840 | |
With | 0.6260 | 0.8598 | 1.0000 | 0.9916 | 0.5958 | 0.9706 | |
KNN | 0.5467 | 0.7700 | 0.9158 | 0.9866 | 0.8594 | 0.7650 | |
With | 0.6660 | 0.8665 | 0.8759 | 0.9744 | 0.8497 | 0.7711 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | PCA | 0.9111 | 0.9000 | 0.9895 | 0.9909 | 0.9229 | 0.9889 |
TSVD | 0.8667 | 0.9000 | 0.9895 | 0.9909 | 0.9229 | 0.9889 | |
TSNE | 0.2378 | 0.5500 | 0.6497 | 0.6139 | 0.4990 | 0.2731 | |
RF | PCA | 0.7822 | 0.8250 | 0.8842 | 0.9545 | 0.8176 | 0.8591 |
TSVD | 0.7156 | 0.8750 | 0.8842 | 1.0000 | 0.8271 | 0.8164 | |
TSNE | 0.2378 | 0.6500 | 0.6696 | 0.6229 | 0.4605 | 0.4041 | |
SVM | PCA | 0.7356 | 0.9250 | 1.0000 | 1.0000 | 0.9133 | 0.9012 |
TSVD | 0.5067 | 0.9000 | 1.0000 | 0.9909 | 0.8457 | 0.9123 | |
TSNE | 0.2178 | 0.6000 | 0.6918 | 0.6961 | 0.4795 | 0.4047 | |
GBC | PCA | 0.6422 | 0.7850 | 0.8942 | 0.9537 | 0.8210 | 0.8668 |
TSVD | 0.6644 | 0.8125 | 0.8731 | 0.9537 | 0.8290 | 0.8351 | |
TSNE | 0.2800 | 0.6125 | 0.6744 | 0.4667 | 0.4463 | 0.3625 | |
GNB | PCA | 0.7578 | 0.8250 | 0.8415 | 0.9087 | 0.6533 | 0.7281 |
TSVD | 0.7356 | 0.8750 | 0.8520 | 0.9268 | 0.6433 | 0.6953 | |
TSNE | 0.2356 | 0.6125 | 0.6386 | 0.6043 | 0.4405 | 0.3497 | |
KNN | PCA | 0.7822 | 0.8750 | 0.9041 | 0.9727 | 0.8452 | 0.8041 |
TSVD | 0.7800 | 0.8750 | 0.8830 | 0.9727 | 0.8652 | 0.8146 | |
TSNE | 0.2600 | 0.5875 | 0.6497 | 0.6697 | 0.4429 | 0.3708 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | PCA | 0.8900 | 0.9056 | 0.9909 | 0.9905 | 0.9324 | 0.9929 |
TSVD | 0.8567 | 0.9056 | 0.9909 | 0.9905 | 0.9324 | 0.9929 | |
TSNE | 0.1660 | 0.5568 | 0.6548 | 0.6207 | 0.5084 | 0.2679 | |
RF | PCA | 0.8250 | 0.8460 | 0.9054 | 0.9744 | 0.8187 | 0.8771 |
TSVD | 0.7283 | 0.8888 | 0.9054 | 1.0000 | 0.8234 | 0.8290 | |
TSNE | 0.2233 | 0.6658 | 0.6603 | 0.6270 | 0.4732 | 0.4012 | |
SVM | PCA | 0.7817 | 0.9434 | 1.0000 | 1.0000 | 0.9239 | 0.8925 |
TSVD | 0.4844 | 0.9056 | 1.0000 | 0.9905 | 0.8468 | 0.9067 | |
TSNE | 0.1647 | 0.6076 | 0.6880 | 0.6946 | 0.4736 | 0.4241 | |
GBC | PCA | 0.6143 | 0.8075 | 0.8913 | 0.9619 | 0.8384 | 0.8720 |
TSVD | 0.6407 | 0.8190 | 0.8688 | 0.9528 | 0.8563 | 0.8367 | |
TSNE | 0.2397 | 0.6213 | 0.6882 | 0.4888 | 0.4560 | 0.3752 | |
GNB | PCA | 0.7590 | 0.8417 | 0.8626 | 0.9331 | 0.6732 | 0.7521 |
TSVD | 0.7123 | 0.8999 | 0.8756 | 0.9466 | 0.6646 | 0.7282 | |
TSNE | 0.1800 | 0.6484 | 0.6397 | 0.6034 | 0.4400 | 0.3502 | |
KNN | PCA | 0.6767 | 0.9072 | 0.9157 | 0.9742 | 0.8449 | 0.7810 |
TSVD | 0.6367 | 0.9072 | 0.9043 | 0.9742 | 0.8658 | 0.7935 | |
TSNE | 0.2200 | 0.5889 | 0.6600 | 0.6743 | 0.4497 | 0.3923 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | PCA | 0.9083 | 0.8978 | 0.9889 | 0.9944 | 0.9149 | 0.9833 |
TSVD | 0.8750 | 0.8978 | 0.9889 | 0.9944 | 0.9149 | 0.9833 | |
TSNE | 0.2133 | 0.5528 | 0.6648 | 0.5949 | 0.5106 | 0.2908 | |
RF | PCA | 0.8517 | 0.8274 | 0.8929 | 0.9630 | 0.8157 | 0.8844 |
TSVD | 0.7717 | 0.8792 | 0.8929 | 1.0000 | 0.8195 | 0.8427 | |
TSNE | 0.2617 | 0.6581 | 0.6566 | 0.6036 | 0.4738 | 0.4147 | |
SVM | PCA | 0.7817 | 0.9214 | 1.0000 | 1.0000 | 0.9072 | 0.9074 |
TSVD | 0.6100 | 0.8978 | 1.0000 | 0.9944 | 0.8459 | 0.9233 | |
TSNE | 0.2133 | 0.5986 | 0.6941 | 0.7038 | 0.4873 | 0.4318 | |
GBC | PCA | 0.6413 | 0.7848 | 0.8993 | 0.9589 | 0.8061 | 0.8849 |
TSVD | 0.6613 | 0.8140 | 0.8771 | 0.9626 | 0.8101 | 0.8378 | |
TSNE | 0.2440 | 0.6188 | 0.6924 | 0.4256 | 0.4572 | 0.3864 | |
GNB | PCA | 0.8017 | 0.8242 | 0.8418 | 0.8804 | 0.6506 | 0.7124 |
TSVD | 0.7617 | 0.8728 | 0.8518 | 0.9081 | 0.6415 | 0.6736 | |
TSNE | 0.2533 | 0.6139 | 0.6479 | 0.5776 | 0.4488 | 0.3746 | |
KNN | PCA | 0.7867 | 0.8714 | 0.9099 | 0.9778 | 0.8363 | 0.8035 |
TSVD | 0.7567 | 0.8714 | 0.8888 | 0.9778 | 0.8565 | 0.8097 | |
TSNE | 0.2667 | 0.5897 | 0.6628 | 0.6759 | 0.4473 | 0.4254 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | PCA | 0.8827 | 0.8978 | 0.9894 | 0.9920 | 0.9185 | 0.9862 |
TSVD | 0.8427 | 0.8978 | 0.9894 | 0.9920 | 0.9185 | 0.9862 | |
TSNE | 0.1780 | 0.5457 | 0.6417 | 0.5811 | 0.4912 | 0.2504 | |
RF | PCA | 0.7923 | 0.8210 | 0.8806 | 0.9585 | 0.8131 | 0.8533 |
TSVD | 0.6977 | 0.8740 | 0.8806 | 1.0000 | 0.8206 | 0.8076 | |
TSNE | 0.2180 | 0.6458 | 0.6488 | 0.5881 | 0.4591 | 0.3809 | |
SVM | PCA | 0.7373 | 0.9219 | 1.0000 | 1.0000 | 0.9092 | 0.8871 |
TSVD | 0.4842 | 0.8978 | 1.0000 | 0.9920 | 0.8422 | 0.9042 | |
TSNE | 0.1615 | 0.5927 | 0.6809 | 0.6750 | 0.4665 | 0.4004 | |
GBC | PCA | 0.5804 | 0.7791 | 0.8903 | 0.9580 | 0.8110 | 0.8597 |
TSVD | 0.5988 | 0.8110 | 0.8684 | 0.9542 | 0.8152 | 0.8278 | |
TSNE | 0.2245 | 0.6102 | 0.6666 | 0.4306 | 0.4398 | 0.3361 | |
GNB | PCA | 0.7522 | 0.8209 | 0.8342 | 0.8866 | 0.6387 | 0.7102 |
TSVD | 0.7056 | 0.8699 | 0.8442 | 0.9125 | 0.6274 | 0.6859 | |
TSNE | 0.1880 | 0.6026 | 0.6297 | 0.5553 | 0.4318 | 0.3318 | |
KNN | PCA | 0.7003 | 0.8665 | 0.8992 | 0.9744 | 0.8389 | 0.7601 |
TSVD | 0.6660 | 0.8665 | 0.8759 | 0.9744 | 0.8594 | 0.7711 | |
TSNE | 0.2227 | 0.5751 | 0.6376 | 0.6491 | 0.4394 | 0.3804 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | RF | 0.9333 | 0.9000 | 0.9895 | 1.0000 | 0.9514 | 0.9889 |
LR | 0.9556 | 0.9125 | 1.0000 | 1.0000 | 0.9610 | 0.9889 | |
RF | RF | 0.8889 | 0.9000 | 0.9895 | 1.0000 | 0.9324 | 0.9889 |
LR | 0.8667 | 0.9250 | 1.0000 | 1.0000 | 0.9229 | 0.9889 | |
SVM | RF | 0.9111 | 0.9125 | 1.0000 | 1.0000 | 0.9324 | 0.9889 |
LR | 0.9333 | 0.9375 | 1.0000 | 1.0000 | 0.9229 | 0.9889 | |
GBC | RF | 0.6289 | 0.8600 | 0.8978 | 0.9814 | 0.8686 | 0.8591 |
LR | 0.5889 | 0.8025 | 0.8957 | 0.9814 | 0.8662 | 0.8568 | |
GNB | RF | 0.7178 | 0.9000 | 1.0000 | 1.0000 | 0.8357 | 0.9889 |
LR | 0.7400 | 0.9250 | 1.0000 | 1.0000 | 0.7110 | 0.9889 | |
KNN | RF | 0.8667 | 0.9000 | 0.9895 | 0.9909 | 0.9229 | 0.9784 |
LR | 0.9556 | 0.9125 | 0.9778 | 0.9909 | 0.8938 | 0.9673 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | RF | 0.9433 | 0.9056 | 0.9909 | 1.0000 | 0.9629 | 0.9929 |
LR | 0.9633 | 0.9249 | 1.0000 | 1.0000 | 0.9691 | 0.9929 | |
RF | RF | 0.8767 | 0.9056 | 0.9909 | 1.0000 | 0.9428 | 0.9929 |
LR | 0.8767 | 0.9362 | 1.0000 | 1.0000 | 0.9324 | 0.9929 | |
SVM | RF | 0.8900 | 0.9249 | 1.0000 | 1.0000 | 0.9428 | 0.9929 |
LR | 0.9500 | 0.9516 | 1.0000 | 1.0000 | 0.9324 | 0.9929 | |
GBC | RF | 0.6759 | 0.8754 | 0.8963 | 0.9771 | 0.8770 | 0.8685 |
LR | 0.6270 | 0.8103 | 0.8956 | 0.9771 | 0.8758 | 0.8594 | |
GNB | RF | 0.7200 | 0.9056 | 1.0000 | 1.0000 | 0.8385 | 0.9929 |
LR | 0.7667 | 0.9335 | 1.0000 | 1.0000 | 0.7219 | 0.9929 | |
KNN | RF | 0.8167 | 0.9056 | 0.9909 | 0.9905 | 0.9344 | 0.9804 |
LR | 0.9633 | 0.9266 | 0.9714 | 0.9905 | 0.9012 | 0.9720 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | RF | 0.9417 | 0.8978 | 0.9889 | 1.0000 | 0.9428 | 0.9833 |
LR | 0.9617 | 0.9103 | 1.0000 | 1.0000 | 0.9553 | 0.9833 | |
RF | RF | 0.8883 | 0.8978 | 0.9889 | 1.0000 | 0.9226 | 0.9833 |
LR | 0.8750 | 0.9246 | 1.0000 | 1.0000 | 0.9149 | 0.9833 | |
SVM | RF | 0.9083 | 0.9103 | 1.0000 | 1.0000 | 0.9226 | 0.9833 |
LR | 0.9483 | 0.9357 | 1.0000 | 1.0000 | 0.9149 | 0.9833 | |
GBC | RF | 0.6657 | 0.8560 | 0.8990 | 0.9849 | 0.8649 | 0.8611 |
LR | 0.6117 | 0.8041 | 0.8958 | 0.9849 | 0.8603 | 0.8591 | |
GNB | RF | 0.7850 | 0.8978 | 1.0000 | 1.0000 | 0.8297 | 0.9833 |
LR | 0.7983 | 0.9228 | 1.0000 | 1.0000 | 0.7156 | 0.9833 | |
KNN | RF | 0.8633 | 0.8978 | 0.9889 | 0.9944 | 0.9101 | 0.9762 |
LR | 0.9617 | 0.9107 | 0.9846 | 0.9944 | 0.8819 | 0.9662 |
Method | FS Method | Brain | Colon | Leukemia | Lymphoma | Prostate | SBRCT |
---|---|---|---|---|---|---|---|
LR | RF | 0.9253 | 0.8978 | 0.9894 | 1.0000 | 0.9481 | 0.9862 |
LR | 0.9520 | 0.9097 | 1.0000 | 1.0000 | 0.9592 | 0.9862 | |
RF | RF | 0.8640 | 0.8978 | 0.9894 | 1.0000 | 0.9279 | 0.9862 |
LR | 0.8493 | 0.9232 | 1.0000 | 1.0000 | 0.9185 | 0.9862 | |
SVM | RF | 0.8827 | 0.9097 | 1.0000 | 1.0000 | 0.9279 | 0.9862 |
LR | 0.9360 | 0.9356 | 1.0000 | 1.0000 | 0.9185 | 0.9862 | |
GBC | RF | 0.6066 | 0.8570 | 0.8926 | 0.9794 | 0.8637 | 0.8515 |
LR | 0.5470 | 0.8014 | 0.8898 | 0.9794 | 0.8591 | 0.8481 | |
GNB | RF | 0.7063 | 0.8978 | 1.0000 | 1.0000 | 0.8302 | 0.9862 |
LR | 0.7320 | 0.9237 | 1.0000 | 1.0000 | 0.7075 | 0.9862 | |
KNN | RF | 0.8153 | 0.8978 | 0.9894 | 0.9920 | 0.9170 | 0.9752 |
LR | 0.9520 | 0.9106 | 0.9750 | 0.9920 | 0.8879 | 0.9651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petinrin, O.O.; Saeed, F.; Salim, N.; Toseef, M.; Liu, Z.; Muyide, I.O. Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification. Processes 2023, 11, 1940. https://doi.org/10.3390/pr11071940
Petinrin OO, Saeed F, Salim N, Toseef M, Liu Z, Muyide IO. Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification. Processes. 2023; 11(7):1940. https://doi.org/10.3390/pr11071940
Chicago/Turabian StylePetinrin, Olutomilayo Olayemi, Faisal Saeed, Naomie Salim, Muhammad Toseef, Zhe Liu, and Ibukun Omotayo Muyide. 2023. "Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification" Processes 11, no. 7: 1940. https://doi.org/10.3390/pr11071940
APA StylePetinrin, O. O., Saeed, F., Salim, N., Toseef, M., Liu, Z., & Muyide, I. O. (2023). Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification. Processes, 11(7), 1940. https://doi.org/10.3390/pr11071940