Preserving the Internal Quality of Quail Eggs Using a Corn Starch-Based Coating Combined with Basil Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliveira, G.D.S.; dos Santos, V.M.; Rodrigues, J.C.; Santana, Â.P. Conservation of the Internal Quality of Eggs Using A Biodegradable Coating. Poult. Sci. 2020, 99, 7207–7213. [Google Scholar] [CrossRef] [PubMed]
- Saleh, G.; El Darra, N.; Kharroubi, S.; Farran, M.T. Influence of Storage Conditions on Quality and Safety of Eggs Collected from Lebanese Farms. Food Control 2020, 111, 107058. [Google Scholar] [CrossRef]
- Singh, B.K.; Tiwari, S.; Dubey, N.K. Essential Oils and Their Nanoformulations as Green Preservatives to Boost Food Safety against Mycotoxin Contamination of Food Commodities: A Review. J. Sci. Food Agric. 2021, 101, 4879–4890. [Google Scholar] [CrossRef]
- Akpinar, G.C.; Canogullari, S.; Baylan, M.; Alasahan, S.; Aygun, A. The Use of Propolis Extract for the Storage of Quail Eggs. J. Appl. Poult. Res. 2015, 24, 427–435. [Google Scholar] [CrossRef]
- Derelioğlu, E.; Turgay, Ö. Effect of Chitosan Coatings on Quality and Shelf-Life of Chicken and Quail Eggs. Afr. J. Food Sci. 2022, 16, 63–70. [Google Scholar]
- Oliveira, G.d.S.; McManus, C.C.; Salgado, C.B.; Pires, P.G.d.S.; dos Santos, V.M. Rice Flour Coating Supplemented with Rosemary Essential Oil to Preserve the Internal, Microbiological and Sensory Quality of Quail Eggs. Acta Aliment. 2023, 52, 1–11. [Google Scholar] [CrossRef]
- Tabasum, S.; Younas, M.; Zaeem, M.A.; Majeed, I.; Majeed, M.; Noreen, A.; Iqbal, M.N.; Zia, K.M. A Review on Blending of Corn Starch with Natural and Synthetic Polymers, and Inorganic Nanoparticles with Mathematical Modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [Google Scholar] [CrossRef]
- Ghosh, A.; Dey, K.; Bhowmick, N. Effect of Corn Starch Coating on Storage Life and Quality of Assam Lemon (Citrus limon Burn.). J. Crop Weed 2015, 11, 101–107. [Google Scholar]
- Oyom, W.; Zhang, Z.; Bi, Y.; Tahergorabi, R. Application of Starch-Based Coatings Incorporated with Antimicrobial Agents for Preservation of Fruits and Vegetables: A Review. Prog. Org. Coat. 2022, 166, 106800. [Google Scholar] [CrossRef]
- Aquino, A.A.; Santos, R.A.; Moreira, E.S.; Xavier, M.L.; Aranha, C.L.S.; Pereira, M.A.; Brandão, M.R.S. Conservação Pós-Colheita de Tomate-Cereja Orgânico com Revestimento Comestível e Adicionado de Óleo Essencial de Manjericão [Postharvest Conservation of Organic Cherry Tomatoes with Edible Coating and Added Basil Essential Oil]. Estud. Pesqui. Extensão Ciências Tecnol. Aliment. 2021, 1, 129–153. [Google Scholar]
- Haugh, R.R. A New Method for Determining the Quality of an Egg. US Egg Poult. 1937, 39, 27–49. [Google Scholar]
- Funk, E.M. The Relation of Yolk Index Determined in Natural Position to the Yolk Index as Determined after Separating the Yolk from the Albumen. Poult. Sci. 1948, 27, 367. [Google Scholar] [CrossRef]
- Nwamo, A.C.; Oshibanjo, D.O.; Sati, N.M.; Emennaa, P.E.; Mbuka, J.J.; Njam, R.L.; Bature, E.; Ejidare, D.A.; Gyang, B.D.; Adeniyi, A.K.; et al. Egg Quality and Sensory Evaluation as Affected by Temperature and Storage Days of Fertile and Non-Fertile Eggs. Niger. J. Anim. Prod. 2021, 48, 23–32. [Google Scholar] [CrossRef]
- Wells, J.B.; Coufal, C.D.; Parker, H.M.; McDaniel, C.D. Disinfection of Eggshells Using Ultraviolet Light and Hydrogen Peroxide Independently and in Combination. Poult. Sci. 2010, 89, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.C.; Assis, D.C.S.; Menezes, L.D.M.; Oliveira, D.D.; Lima, A.L.; Souza, M.R.; Heneine, L.G.D.; Cançado, S.V. Effects of Packaging, Mineral Oil Coating, and Storage Time on Biogenic Amine Levels and Internal Quality of Eggs. Poult. Sci. 2014, 93, 3171–3178. [Google Scholar] [CrossRef] [PubMed]
- Pires, P.G.D.S.; Pires, P.D.D.S.; Cardinal, K.M.; Bavaresco, C. The Use of Coatings in Eggs: A Systematic Review. Trends Food Sci. Technol. 2020, 106, 312–321. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; dos Santos, V.M.; Nascimento, S.T. Essential Oils as Sanitisers for Hatching Eggs. Worlds Poult. Sci. J. 2021, 77, 605–617. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; McManus, C.; dos Santos, V.M. Essential Oils and Propolis as Additives in Egg Coatings. Worlds Poult. Sci. J. 2022, 78, 1053–1066. [Google Scholar] [CrossRef]
- Evangelho, J.A.; Dannenberg, G.S.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; Fiorentini, A.M.; Zavareze, E.R. Antibacterial Activity, Optical, Mechanical, and Barrier Properties of Corn Starch Films Containing Orange Essential Oil. Carbohydr. Polym. 2019, 222, 114981. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, Mechanical and Barrier Properties of Corn Starch Films Incorporated with Plant Essential Oils. Carbohydr. Polym. 2013, 98, 1117–1126. [Google Scholar] [CrossRef]
- Sakkas, H.; Gousia, P.; Economou, V.; Sakkas, V.; Petsios, S.; Papadopoulou, C. In Vitro Antimicrobial Activity of Five Essential Oils on Multidrug Resistant Gram-Negative Clinical Isolates. J. Intercult. Ethnopharmacol. 2016, 5, 212–218. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; McManus, C.; Pires, P.G.D.S.; dos Santos, V.M. Combination of Cassava Starch Biopolymer and Essential Oils for Coating Table Eggs. Front. Sustain. Food Syst. 2022, 6, 957229. [Google Scholar] [CrossRef]
- Sun, R.; Song, G.; Zhang, H.; Zhang, H.; Chi, Y.; Ma, Y.; Li, H.; Bai, S.; Zhang, X. Effect of Basil Essential Oil and Beeswax Incorporation on the Physical, Structural, and Antibacterial Properties of Chitosan Emulsion Based Coating for Eggs Preservation. LWT 2021, 150, 112020. [Google Scholar] [CrossRef]
- Zhelyazkov, S.; Zsivanovits, G.; Stamenova, E.; Marudova, M. Physical and Barrier Properties of Clove Essential Oil Loaded Potato Starch Edible Films. Biointerface Res. Appl. Chem. 2022, 12, 4603–4612. [Google Scholar]
- Yuceer, M.; Caner, C. Antimicrobial Lysozyme-Chitosan Coatings Affect Functional Properties and Shelf Life of Chicken Eggs during Storage. J. Sci. Food Agric. 2014, 94, 153–162. [Google Scholar] [CrossRef]
- Yüceer, M.; Caner, C. The Effects of Ozone, Ultrasound and Coating with Shellac and Lysozyme–Chitosan on Fresh Egg during Storage at Ambient Temperature—Part 1: Interior Quality Changes. Int. J. Food Sci. Technol. 2020, 55, 259–266. [Google Scholar] [CrossRef]
- Eddin, A.S.; Tahergorabi, R. Efficacy of Sweet Potato Starch-Based Coating to Improve Quality and Safety of Hen Eggs during Storage. Coatings 2019, 9, 205. [Google Scholar] [CrossRef]
- Severa, L.; Nedomová, Š.; Buchar, J. Influence of Storing Time and Temperature on the Viscosity of an Egg Yolk. J. Food Eng. 2010, 96, 266–269. [Google Scholar] [CrossRef]
- Pires, P.G.S.; Leuven, A.F.R.; Franceschi, C.H.; Machado, G.S.; Pires, P.D.S.; Moraes, P.O.; Kindlein, L.; Andretta, I. Effects of Rice Protein Coating Enriched with Essential Oils on Internal Quality and Shelf Life of Eggs during Room Temperature Storage. Poult. Sci. 2020, 99, 604–611. [Google Scholar] [CrossRef]
- Cedro, T.M.M.; Calixto, L.F.L.; Gaspar, A.; Curvello, F.A.; Hora, A.S. Internal Quality of Conventional and Omega-3-Enriched Commercial Eggs Stored under Different Temperatures. Braz. J. Poult. Sci. 2009, 11, 181–185. [Google Scholar] [CrossRef]
- Farnejad, S.; Nouri, M.; Dolatabad, S.S. Obtaining of Chickpea Protein Isolate and its Application as Coating Enriched with Essential Oils from Satureja hortensis and Satureja mutica in Egg at Room Temperature. Int. J. Food Sci. Technol. 2022, 57, 400–407. [Google Scholar] [CrossRef]
- Soares, R.A.; Borges, S.V.; Dias, M.V.; Piccoli, R.H.; Fassani, E.J.; da Silva, E.M.C. Impact of Whey Protein Isolate/Sodium Montmorillonite/Sodium Metabisulfite Coating on the Shelf Life of Fresh Eggs during Storage. LWT 2021, 139, 110611. [Google Scholar] [CrossRef]
- Caner, C.; Cansiz, Ö. Chitosan coating minimises eggshell breakage and improves egg quality. J. Sci. Food Agric. 2008, 88, 56–61. [Google Scholar] [CrossRef]
Retention Time | Kovats Index | Kovats Index Library | Area (%) | Name | % of Similarity |
---|---|---|---|---|---|
4.336 | 939 | 939 | 0.10 | α-pinene | 96 |
5.153 | 977 | 977 | 0.02 | Sabinene | 90 |
5.233 | 981 | 980 | 0.06 | β-Pinene | 95 |
5.320 | 984 | 978 | 0.01 | 1-octeno-3-ol | 86 |
5.459 | 989 | 987 | 0.10 | 6-Methyl-5-heptene-2-one | 93 |
5.537 | 992 | 992 | 0.08 | β-Myrcene | 92 |
6.052 | 1013 | 1013 | 0.01 | δ-3-carene | 89 |
6.438 | 1028 | 1028 | 0.30 | o-Cymene | 96 |
6.549 | 1032 | 1032 | 0.35 | D-Limonene | 95 |
6.620 | 1035 | 1031 | 0.63 | 1,8-cineole | 96 |
7.106 | 1052 | 1052 | 0.06 | (E)-β-ocimene | 96 |
7.916 | 1077 | 1072 | 0.40 | Cis-Linalool oxide (furanoid) | 94 |
8.456 | 1092 | 1086 | 0.34 | Trans-Linalool oxide (furanoid) | 94 |
9.183 | 1113 | 1095 | 22.96 | Linalool | 98 |
9.755 | 1131 | - | 0.04 | Plinol A | 95 |
10.735 | 1158 | 1152 | 0.37 | Menthona | 96 |
10.865 | 1161 | 1162 | 0.06 | Cis-p-3-menthona | 89 |
11.220 | 1170 | 1165 | 0.33 | Neomenthol | 91 |
11.645 | 1180 | 1171 | 1.73 | Menthol | 97 |
13.380 | 1224 | 1213 | 60.98 | Estragole | 96 |
13.621 | 1230 | - | 0.11 | (-)-trans-isopiperitenol | 91 |
13.952 | 1239 | 1229 | 0.08 | Geraniol | 86 |
14.250 | 1246 | 1237 | 0.01 | Pulegone | 89 |
14.335 | 1248 | 1238 | 0.55 | Neral | 97 |
14.842 | 1260 | 1252 | 0.22 | Anethole | 94 |
14.947 | 1263 | 1265 | 0.21 | Anisic aldehyde | 90 |
15.515 | 1276 | 1267 | 0.75 | Geranial | 97 |
16.217 | 1291 | 1284 | 1.52 | Anethole (E) | 97 |
16.412 | 1295 | 1295 | 0.07 | Mentyl acetate | 92 |
18.127 | 1338 | 1338 | 0.03 | δ-Elemene | 92 |
18.638 | 1351 | 1352 | 0.03 | a-cubebene | 89 |
19.691 | 1375 | 1376 | 0.04 | Copaene | 92 |
20.256 | 1387 | 1383 | 0.08 | Hexyl hexanoate | 87 |
20.400 | 1391 | 1436 | 0.05 | γ-Elemene | 89 |
21.187 | 1409 | 1403 | 0.03 | Methyl eugenol | 89 |
21.458 | 1416 | 1419 | 0.28 | (E) Caryophyllene | 96 |
22.221 | 1436 | 1435 | 0.61 | Trans-a-bergamotene | 97 |
22.496 | 1443 | 1459 | 0.06 | Sesquisabinene | 94 |
23.121 | 1458 | 1458 | 0.16 | (E)-β-farnesene | 96 |
23.985 | 1478 | 1481 | 0.03 | Germacrene D | 92 |
25.182 | 1507 | 1505 | 0.11 | β-Bisabolene | 94 |
25.755 | 1522 | 1523 | 0.02 | d-Cadinene | 91 |
26.601 | 1544 | 1515 | 1.30 | γ-Bisabolene | 95 |
27.410 | 1565 | 1565 | 0.05 | (E)-nerolidol | 92 |
27.782 | 1574 | 1564 | 0.95 | 3-Methoxycinnamaldehyde | 95 |
29.049 | 1605 | 1608 | 0.08 | Humulene epoxide | 91 |
31.954 | 1683 | 1684 | 0.02 | Epi-α-bisabolol | 92 |
53.630 | 2366 | - | 0.03 | β-amyrin acetate derivative—oleanane type triterpene | 91 |
53.916 | 2377 | - | 0.14 | α-amyrin acetate derivate—oleane type triterpene | 91 |
60.965 | - | - | 1.43 | α-alpha-Amyrin acetate derivate (ursane type triterpene) | 90 |
- | 1.85 | Unidentified |
Bacterial Strains | BEO Concentration (mg/mL) | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
Escherichia coli | IN | IN | IN | IN | IN |
Staphylococcus aureus | NI | NI | IN | IN | IN |
Coating | CS (g) | BEO (g) * | Glycerol (g) | Distilled Water (mL) |
---|---|---|---|---|
CS | 24 | 0 | 12 | 400 |
CS/BEO | 24 | 4 | 12 | 400 |
Parameters | Evaluation | Evaluation Equipment | Evaluation Day | Number of Eggs Evaluated */Treatment (Weekly) | Formula | Reference |
---|---|---|---|---|---|---|
Egg weight loss (EWL, %) | Initial (IEW) and final egg weight (FEW) | Analytical scale with 0.0001 g precision (Gehaka, São Paulo, São Paulo, Brazil) | From day 7 (weekly) | 8 | EWL = (IEW − FEW)/IEW × 100 | - |
Haugh unit (HU) | Albumen height (H) and egg weight (W) | Analytical scale and digital caliper with 0.001-mm precision (Mitutoyo, Suzano, São Paulo, Brazil) | From day 0 (weekly) | 8 | HU = 100 log (H + 7.57 − 1.7 W0.37) | [11] |
Yolk index (YI) | Yolk height (h) and yolk diameter (d) | Digital caliper | From day 0 (weekly) | 8 | YI = h/d | [12] |
Albumen pH (ApH) and yolk pH (YpH) | ApH and YpH | Digital pH meter (Kasvi, Campina São José do Pinhais, Paraná, Brazil) | From day 0 (weekly) | 8 | - | - |
Treatments | Eggshell | ||
Total Aerobic Mesophilic Bacteria | Enterobacteriaceae | Molds and Yeasts | |
Control | 3.14 ± 0.35 a | 3.04 ± 0.28 a | 3.07 ± 0.35 a |
CS | 2.39 ± 0.07 b | 2.20 ± 0.12 b | 2.31 ± 0.08 b |
CS/BEO | 1.43 ± 0.19 c | 1.53 ± 0.25 c | 1.87 ± 0.18 b |
p value | 0.0003 | 0.0006 | 0.0021 |
Treatments | Egg Content | ||
Total Aerobic Mesophilic Bacteria | Enterobacteriaceae | Molds and Yeasts | |
Control | 2.50 ± 0.14 a | 3.10 ± 0.31 a | 3.15 ± 0.27 a |
CS | 2.04 ± 0.09 ab | 2.27 ± 0.09 ab | 1.96 ± 0.54 b |
CS/BEO | 1.00 ± 0.86 b | 1.27 ± 0.75 b | 1.73 ± 0.23 b |
p value | 0.0269 | 0.0093 | 0.0074 |
Treatment | EWL (%) | ||||
0 weeks | 1 weeks | 2 weeks | 3 weeks | 4 weeks | |
Control | - | 2.15 ± 2.02 B,a | 3.75 ± 2.95 AB,a | 6.30 ± 2.61 A,a | 7.12 ± 0.99 A,a |
CS | - | 2.40 ± 0.83 B,a | 3.00 ± 0.69 AB,a | 4.78 ± 1.47 AB,ab | 5.13 ± 0.79 A,ab |
CS/BEO | - | 2.25 ± 0.95 A,a | 2.94 ± 0.96 A,a | 3.66 ± 1.09 A,b | 3.89 ± 0.80 A,b |
p value | |||||
T | 0.0002 | ||||
SP | <0.0001 | ||||
TxSP | 0.0684 | ||||
Treatment | HU (Egg grade *) | ||||
0 weeks | 1 weeks | 2 weeks | 3 weeks | 4 weeks | |
Control | 92.23 (AA) ± 4.21 A,a | 85.73 (AA) ± 2.53 B,a | 81.83 (AA) ± 2.78 BC,a | 79.69 (AA) ± 3.79 BC,a | 77.57 (AA) ± 3.27 C,a |
CS | 92.23 (AA) ± 4.21 A,a | 87.57 (AA) ± 3.20 AB,a | 85.95 (AA) ± 1.64 B,a | 84.62 (AA) ± 1.89 B,a | 77.95 (AA) ± 4.55 C,a |
CS/BEO | 92.23 (AA) ± 4.21 A,a | 86.51 (AA) ± 2.39 B,a | 86.27 (AA) ± 2.21 B,a | 85.04 (AA) ± 2.36 B,a | 81.74 (AA) ± 3.10 B,a |
p value | |||||
T | 0.0016 | ||||
SP | <0.0001 | ||||
TxSP | 0.0956 | ||||
Treatment | YI | ||||
0 weeks | 1 weeks | 2 weeks | 3 weeks | 4 weeks | |
Control | 0.38 ± 0.03 A,a | 0.29 ± 0.03 B,a | 0.23 ± 0.02 CD,a | 0.17 ± 0.02 DE,b | 0.13 ± 0.01 E,b |
CS | 0.38 ± 0.03 A,a | 0.28 ± 0.09 B,a | 0.25 ± 0.02 B,a | 0.18 ± 0.01 C,ab | 0.15 ± 0.02 C,ab |
CS/BEO | 0.38 ± 0.03 A,a | 0.33 ± 0.02 B,a | 0.28 ± 0.02 BC,a | 0.23 ± 0.04 CD,a | 0.20 ± 0.04 D,a |
p value | |||||
T | <0.0001 | ||||
SP | <0.0001 | ||||
TxSP | 0.0039 | ||||
Treatment | ApH | ||||
0 weeks | 1 weeks | 2 weeks | 3 weeks | 4 weeks | |
Control | 9.43 ± 0.40 B,a | 9.70 ± 0.05 AB,a | 9.83 ± 0.22 AB,a | 10.00 ± 0.40 A,a | 10.02 ± 0.29 A,a |
CS | 9.43 ± 0.40 B,a | 9.73 ± 0.13 AB,a | 9.62 ± 0.14 AB,a | 9.95 ± 0.33 A,a | 9.76 ± 0.13 A,a |
CS/BEO | 9.43 ± 0.40 A,a | 9.48 ± 0.35 A,a | 9.50 ± 0.16 A,a | 9.64 ± 0.0.37 A,a | 9.60 ± 0.15 A,a |
p value | |||||
T | <0.0001 | ||||
SP | <0.0001 | ||||
TxSP | 0.2099 | ||||
Treatment | YpH | ||||
0 weeks | 1 weeks | 2 weeks | 3 weeks | 4 weeks | |
Control | 6.82 ± 0.33 C,a | 7.14 ± 0.22 BC,a | 7.41 ± 0.18 AB,a | 7.70 ± 0.28 A,a | 7.77 ± 0.14 A,a |
CS | 6.82 ± 0.33 C,a | 7.15 ± 0.09 BC,a | 7.19 ± 0.38 BC,a | 7.70 ± 0.17 A,a | 7.61 ± 0.21 AB,ab |
CS/BEO | 6.82 ± 0.33 B,a | 7.05 ± 0.32 AB,a | 7.09 ± 0.35 AB,a | 7.28 ± 0.14 A,a | 7.19 ± 0.20 AB,b |
p value | |||||
T | 0.0095 | ||||
SP | <0.0001 | ||||
TxSP | 0.0920 |
Treatments | Sensory Parameters | |||||
---|---|---|---|---|---|---|
Color | Aroma | Odor | Texture | Taste | General Acceptability | |
Control | 6.70 ± 2.36 | 8.20 ± 1.03 | 7.70 ± 1.57 | 7.80 ± 1.93 | 6.90 ± 3.03 | 7.20 ± 1.99 |
CS | 7.70 ± 1.49 | 7.80 ± 1.75 | 7.70 ± 1.95 | 7.70 ± 1.06 | 7.90 ± 1.29 | 7.70 ± 0.95 |
CS/BEO | 8.30 ± 1.34 | 7.90 ± 1.10 | 8.10 ± 0.99 | 7.80 ± 1.23 | 8.10 ± 1.10 | 8.10 ± 0.88 |
p value | 0.1491 | 0.7858 | 0.8030 | 0.9844 | 0.3718 | 0.3522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, M.V.; Oliveira, G.d.S.; McManus, C.; Vale, I.R.R.; Salgado, C.B.; Pires, P.G.d.S.; de Campos, T.A.; Gonçalves, L.F.; Almeida, A.P.C.; Martins, G.d.S.; et al. Preserving the Internal Quality of Quail Eggs Using a Corn Starch-Based Coating Combined with Basil Essential Oil. Processes 2023, 11, 1612. https://doi.org/10.3390/pr11061612
de Araújo MV, Oliveira GdS, McManus C, Vale IRR, Salgado CB, Pires PGdS, de Campos TA, Gonçalves LF, Almeida APC, Martins GdS, et al. Preserving the Internal Quality of Quail Eggs Using a Corn Starch-Based Coating Combined with Basil Essential Oil. Processes. 2023; 11(6):1612. https://doi.org/10.3390/pr11061612
Chicago/Turabian Stylede Araújo, Maria Viviane, Gabriel da Silva Oliveira, Concepta McManus, Igor Rafael Ribeiro Vale, Cristiane Batista Salgado, Paula Gabriela da Silva Pires, Tatiana Amabile de Campos, Laura Fernandes Gonçalves, Ana Paula Cardoso Almeida, Gustavo dos Santos Martins, and et al. 2023. "Preserving the Internal Quality of Quail Eggs Using a Corn Starch-Based Coating Combined with Basil Essential Oil" Processes 11, no. 6: 1612. https://doi.org/10.3390/pr11061612