Particle Deposition Pattern on an Automotive Diesel Filter Using an Eulerian Probability Density Function Method
Abstract
:1. Introduction
2. Eulerian-Eulerian Statistical Approach
3. Diesel in the Paper Filter: Darcy-Brinkman Approximation
4. Numerical Results
Quantitative Comparisons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar]
- Iliev, O.; Kirsch, R.; Osterroth, S. Combined Depth and Cake Filtration Model Coupled with Flow Simulation for Flat and Pleated Filters. Chem. Eng. Technol. 2018, 41, 70–78. [Google Scholar] [CrossRef]
- Sun, Y.; Sanaei, P.; Kondic, L.; Cummings, L.J. Modeling and design optimization for pleated membrane filters. Phys. Rev. Fluids 2020, 5, 044306. [Google Scholar] [CrossRef]
- Von Stockhausen, A.; Mangold, M.P.; Eppinger, D.; Livingston, T. Procedure for determining the allowable particle contamination for diesel fuel injection equipment (FIE). SAE Int. J. Fuels Lubr. 2009, 2, 294–304. [Google Scholar] [CrossRef]
- Bessee, G.; Hutzler, S. The effects of diesel fuel additives on water separation performance. SAE Int. J. Fuels Lubr. 2009, 2, 287–293. [Google Scholar] [CrossRef]
- Bensaid, S.; Marchisio, D.L.; Fino, D. Numerical Simulation of soot filtration and combustion within diesel particulate filters. Chem. Eng. Sci. 2010, 65, 357–363. [Google Scholar] [CrossRef]
- Valiño, L. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 1998, 60, 157–172. [Google Scholar] [CrossRef]
- Valdés-Parada, F.J.; Goyeau, B.; Ochoa-Tapia, J.A. Jump momentum boundary condition at fluid-porous dividing surface: Derivation of the closure problem. Chem. Eng. Sci. 2007, 62, 4025–4039. [Google Scholar] [CrossRef]
- Pathapati, S.; Sansalone, J.J. CFD Modeling of Particulate Matter Fate and Pressure Drop in a Storm-Water Radial Filter. J. Environ. Eng.-ASCE 2009, 135, 77–85. [Google Scholar] [CrossRef]
- Loth, E. Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 2000, 26, 161–223. [Google Scholar] [CrossRef]
- Ochoa-Tapia, J.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Int. J. Heat Mass Transf. 1995, 38, 2635–2646. [Google Scholar] [CrossRef]
- Masarotti, N.; Nithiarasu, P.; Zienkiewicz, O. Natural convection in porous medium-fluid interface problems. A finite element analysis by using the CBS procedure. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 473–490. [Google Scholar] [CrossRef]
- Betchen, L.; Straatman, A.; Thompson, B. A nonequilibrium finite-voume model for conjugate fluid/porous/solid domain. Numer. Heat Transf. A 2006, 49, 543–565. [Google Scholar] [CrossRef]
- Angot, P. Analysis of singular perturbations on the Brinkman problem for fictious domain models of viscous flows. Math. Meth. Appl. Sci. 1999, 22, 1395–1412. [Google Scholar] [CrossRef]
- Iliev, O.; Laptev, V. On numerical simulation of flow through oil filters. Comput. Vis. Sci. 2004, 6, 139–146. [Google Scholar] [CrossRef]
- OpenCFD Ltd. (ESI Group). 2014. Available online: http://www.openfoam.com (accessed on 20 December 2022).
- Jones, M.P.; Storm, M.; York, A.P.E.; Hyde, T.I.; Hatton, G.D.; Greenaway, A.G.; Haigh, S.J.; Eastwood, D.S. 4D In-Situ Microscopy of Aerosol Filtration in a Wall Flow Filter. Materials 2020, 13, 5676. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.A. Spray combustion and atomization. Phys. Fluids 1992, 1, 541. [Google Scholar] [CrossRef]
- Subramaniam, S. Statistical representation of a spray as a point process. Phys. Fluids 2000, 12, 2413–2431. [Google Scholar] [CrossRef]
- Valiño, L.; Hierro, J. Boundary conditions for probability density function transport equations in fluid mechanics. Phys. Rev. E 2003, 67, 046310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Geometrical | Inflow area | |
Filter height | ||
Outer annulus diameter | ||
Inner annulus diameter | ||
Exit duct diameter | ||
Filtering Media | Permeability K | |
Porosity | ||
Paper thickness L | ||
Flow | Flow rate | 120 L/h |
Fluid density | ||
Fluid kinematic viscosity | ||
Particle density | ||
Dust concentration | ||
Prob. density function | ||
Size parameter | ||
Shape parameter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiño, L.; Mustata, R.; Hierro, J.; Hernández, J.L.; García, M.J.; Blasco, C.; Chen, Y.-T.; Chen, L.-W.; Roy, P. Particle Deposition Pattern on an Automotive Diesel Filter Using an Eulerian Probability Density Function Method. Processes 2023, 11, 1100. https://doi.org/10.3390/pr11041100
Valiño L, Mustata R, Hierro J, Hernández JL, García MJ, Blasco C, Chen Y-T, Chen L-W, Roy P. Particle Deposition Pattern on an Automotive Diesel Filter Using an Eulerian Probability Density Function Method. Processes. 2023; 11(4):1100. https://doi.org/10.3390/pr11041100
Chicago/Turabian StyleValiño, Luis, Radu Mustata, Juan Hierro, Juan Luis Hernández, María José García, Carlos Blasco, Yi-Tung Chen, Lung-Wen Chen, and Prosun Roy. 2023. "Particle Deposition Pattern on an Automotive Diesel Filter Using an Eulerian Probability Density Function Method" Processes 11, no. 4: 1100. https://doi.org/10.3390/pr11041100
APA StyleValiño, L., Mustata, R., Hierro, J., Hernández, J. L., García, M. J., Blasco, C., Chen, Y.-T., Chen, L.-W., & Roy, P. (2023). Particle Deposition Pattern on an Automotive Diesel Filter Using an Eulerian Probability Density Function Method. Processes, 11(4), 1100. https://doi.org/10.3390/pr11041100