The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bressers, H.J.L.; van Driel, W.D.; Jansen, K.M.B.; Ernst, L.J.; Zhang, G.Q. Correlation between chemistry of polymer building blocks and microelectronics reliability. Microelectron. Reliab. 2007, 47, 290–294. [Google Scholar] [CrossRef]
- Krebs, F.C. Pad printing as a film forming technique for polymer solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 484–490. [Google Scholar] [CrossRef]
- Matyushin, V.; Schalkhammer, T.; Rauter, H.; Alguel, Y.; Pittner, F. Nanotechnology for smart polymer optical devices. Macromol. Symp. 2004, 217, 109–133. [Google Scholar]
- Zhang, T.; Amin, I.; Sheng, W.; Jordan, R.; Rodriguez, R.D.; Gasiorowski, J.; Rahaman, M.; Kalbacova, J.; Sheremet, E.; Zahn, D.R.T. Bottom-up fabrication of graphene-based conductive polymer carpets for optoelectronics. J. Mater. Chem. C 2018, 6, 4919–4927. [Google Scholar] [CrossRef]
- Herrero, J.; Guillén, C. Transparent films on polymers for photovoltaic applications. Vacuum 2002, 67, 611–616. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, T.; Wen, L.; Zhang, A. Fabricating metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl. Mater. Interfaces 2016, 8, 33999–34007. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, X.; Li, J.; Lin, S.; Zhu, H. Recent developments in graphene conductive ink: Preparation, printing technology and application. Chin. Sci. Bull. 2017, 62, 3217–3235. [Google Scholar] [CrossRef]
- Kravtsova, V.D.; Umerzakova, M.B.; Korobova, N.E.; Vertyanov, D.V. Copper-containing compositions based on alicyclic polyimide for microelectronic applications. Russ. Microelectron. 2018, 47, 455–459. [Google Scholar] [CrossRef]
- Molji, C.; Renjith, S.; Sudha, J.D.; Jinesh, K.B. Macroscopically oriented (3-pentadecyl phenol) dangled fluorene based conductive polymer through side chain engineering for microelectronics. Express Polym. Lett. 2019, 13, 1027–1040. [Google Scholar] [CrossRef]
- Mukhin, N.; Sokolova, I.; Chigirev, D.; Schmidt, M.-P.; Rudaja, L.; Lebedeva, G.; Bol’shakov, M.; Kastro, R.; Hirsch, S. Composite ferroelectric coatings based on a heat-resistant polybenzoxazole polymer matrix. Coatings 2020, 10, 286. [Google Scholar] [CrossRef]
- Ivanov, A.A. Polymer composite materials for semiconductor optoelectronics and microelectronics. Biosci. Biotechnol. Res. Asia 2015, 12, 239–245. [Google Scholar] [CrossRef]
- Agrawal, A.; Satapathy, A. Thermal and dielectric behaviour of polypropylene composites reinforced with ceramic fillers. J. Mater. Sci. Mater. Electron. 2014, 26, 103–112. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kil Mun, K.; Yoo, Y.T. A comparative study on roll-to-roll gravure printing on PET and BOPP webs with aqueous ink. Prog. Org. Coatings 2009, 64, 98–108. [Google Scholar] [CrossRef]
- Siau, S.; Vervaet, A.; Van Calster, A.; Van Vaeck, L.; Schacht, E.; Demeter, U. Adhesion strength of the epoxy polymer/copper interface for use in microelectronics. J. Electrochem. Soc. 2005, 152, C442–C455. [Google Scholar] [CrossRef]
- Czvikovszky, T. Expected and unexpected achievements and trends in radiation processing of polymers. Radiat. Phys. Chem. 2003, 67, 437–440. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Кoндратoв, A.P.; Stolyarov, V.P.; Evlampieva, L.A.; Baranov, V.A.; Gagarin, M.V. Morphology of the surface layer of polymers modified by gaseous fluorine. Polym. Sci. Ser. A 2006, 48, 1164–1170. [Google Scholar] [CrossRef]
- Kumar, A.; Jang, S.Y.; Padilla, J.; Otero, T.F.; Sotzing, G.A. Photopatterned electrochromic conjugated polymer films via precursor approach. Polymer 2008, 49, 3686–3692. [Google Scholar] [CrossRef]
- Nazarov, V.G. Multiple surface structures in polyolefins formed by modification methods. J. Appl. Polym. Sci. 2005, 95, 1198–1208. [Google Scholar] [CrossRef]
- Nazarov, V.G. Structure and composition of the surface layer in polymers modified by elemental fluorine. J. Appl. Polym. Sci. 2005, 95, 897–902. [Google Scholar] [CrossRef]
- Nazarov, V.; Stolyarov, V.; Gagarin, M. Simulation of chemical modification of polymer surface. J. Fluor. Chem. 2014, 161, 120–127. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Doronin, F.A.; Evdokimov, A.G.; Rytikov, G.O.; Stolyarov, V.P. Oxyfluorination-Controlled Variations in the Wettability of Polymer Film Surfaces. Colloid J. 2019, 81, 146–157. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Stolyarov, V.P.; Doronin, F.A.; Evdokimov, A.G.; Rytikov, G.O.; Brevnov, P.N.; Zabolotnov, A.S.; Novokshonova, L.A.; Berlin, A.A. Comparison of the Effects of Some Modification Methods on the Characteristics of Ultrahigh-Molecular-Weight Polyethylene and Composites on Its Basis. Polym. Sci. Ser. A 2019, 61, 325–333. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Jin, Z.; Zhou, M.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef] [PubMed]
- Shum, K.T.; Tanner, J.A. Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. Chembiochem 2008, 9, 3037–3045. [Google Scholar] [CrossRef]
- Holt, K.B. Diamond at the nanoscale: Applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2845–2861. [Google Scholar] [CrossRef]
- Raty, E.J.-Y.; Galli, G. Ultradispersity of diamond at the nanoscale. Nat. Mater. 2003, 2, 792–795. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Vikulova, M.A.; Lopukhova, M.I. Reinforcing effects of aminosilane-functionalized h-bn on the physicochemical and mechanical behaviors of epoxy nanocomposites. Sci. Rep. 2020, 10, 10676. [Google Scholar] [CrossRef]
- Lee, H.; Lim, S.; Birajdar, M.; Lee, S.-H.; Park, H. Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Chahal, S.; Hussain, F.S.J.; Kumar, A.; Yusoff, M.M.; Rasad, M.S.B.A. Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Adv. 2015, 5, 29497–29504. [Google Scholar] [CrossRef]
- Rezvani, Z.; Venugopal, J.R.; Urbanska, A.M.; Mills, D.K.; Ramakrishna, S.; Mozafari, M. A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2181–2200. [Google Scholar] [CrossRef] [PubMed]
- Sakdaronnarong, C.; Sangjan, A.; Boonsith, S.; Kim, D.C.; Shin, H.S. Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts 2020, 10, 320. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Ahmad, M.Z.; Fíla, V. Tuning of nano-based materials for embedding into low-permeability polyimides for a featured gas separation. Front. Chem. 2020, 7, 897. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, M.C.; Cheng, C.H.; Langsdorf, B.L.; Zhou, X. Electrochemical characterization of polyacetylene ionomers and polyelectrolyte-mediated electrochemistry toward interfaces between dissimilarly doped conjugated polymers. J. Am. Chem. Soc. 2002, 124, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Maex, K.; Shamiryan, D.; Iacopi, F.; Brongersma, S.H.; Baklanov, M.R.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841. [Google Scholar] [CrossRef]
- Menegatti, E.; Berardi, D.; Messina, M.; Giachino, O.; Restagno, G.; Roccatello, D.; Ferrante, I.; Spagnolo, B.; Cognolato, L. Lab-on-a-chip: Emerging analytical platforms for immune-mediated diseases. Autoimmun. Rev. 2013, 12, 814–820. [Google Scholar] [CrossRef]
- Junkar, I. Plasma treatment of amorphous and semicrystalline polymers for improved biocompatibility. Vacuum 2013, 98, 111–115. [Google Scholar] [CrossRef]
- Popelka, A.; Kronek, J.; Novák, I.; Kleinová, A.; Mičušík, M.; Špírková, M.; Omastová, M. Surface modification of low-density polyethylene with poly(2-ethyl-2-oxazoline) using a low-pressure plasma treatment. Vacuum 2014, 100, 53–56. [Google Scholar] [CrossRef]
- Louzi, V.C.; Campos, J.S.D.C. Corona treatment applied to synthetic polymeric monofilaments (PP, PET, and PA-6). Surf. Interfaces 2019, 14, 98–107. [Google Scholar] [CrossRef]
- Dai, L.; Xu, D. Polyethylene surface enhancement by corona and chemical co-treatment. Tetrahedron Lett. 2019, 60, 1005–1010. [Google Scholar] [CrossRef]
- Udomluck, N.; Park, H.; Koh, W.-G.; Lim, D.-J. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 2020, 21, 99. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Chen, J.-P.; Su, C.-H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011, 7, 234–243. [Google Scholar] [CrossRef]
- Ho, M.-H.; Hou, L.-T.; Tu, C.-Y.; Hsieh, H.-J.; Lai, J.-Y.; Chen, W.-J.; Wang, D.-M. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol. Biosci. 2006, 6, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.E.; Lamont, S.E.; Karchin, A.; Golledge, S.L.; Ratner, B.D. Fibro-porous meshes made from polyurethane micro-fibers: Effects of surface charge on tissue response. Biomaterials 2005, 26, 813–818. [Google Scholar] [CrossRef]
- Manakhov, A.; Kedronová, E.; Medalová, J.; Cernochová, P.; Obrusník, A.; Michlícek, M.; Shtansky, D.V.; Zajíčková, L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017, 132, 257–265. [Google Scholar] [CrossRef]
- Vesel, A.; Primc, G.; Zaplotnik, R.; Mozetič, M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control Fusion 2020, 62, 024008. [Google Scholar] [CrossRef]
- Karakassides, A.; Ganguly, A.; Papakonstantinou, P.; Tsirka, K.; Paipetis, A.S. Radi-ally grown graphene nanoflakes on carbon fibers as reinforcing interface for polymer composites. ACS Appl. Nano Mater. 2020, 3, 2402–2413. [Google Scholar] [CrossRef]
- Lapenna, A.; Fracassi, F.; Armenise, V.; Angarano, V.; Palazzo, G.; Fanelli, F.; Mal-lardi, A. Direct exposure of dry enzymes to atmospheric pressure non-equilibrium plas-mas: The case of tyrosinase. Materials 2020, 13, 2181. [Google Scholar] [CrossRef]
- Pagliusi, P.; Audia, B.; Provenzano, C.; Cipparrone, G.; Piñol, M.; Oriol, L. Tunable surface patterning of azopolymer by vectorial holography: The role of photoanisotropies in the driving force. ACS Appl. Mater. Interfaces 2019, 11, 34471–34477. [Google Scholar] [CrossRef] [PubMed]
- Sochol, R.D.; Sweet, E.; Glick, C.C.; Wu, S.Y.; Yang, C.; Restaino, M.; Lin, L. 3D printed microfluidics and microelectronics. Microelectron. Eng. 2018, 189, 52–68. [Google Scholar] [CrossRef]
- Choong, Y.Y.C.; Tan, H.W.; Patel, D.C.; Choong, W.T.N.; Chen, C.H.; Low, H.Y.; Tan, M.J.; Patel, C.D.; Chua, C.K. The global rise of 3D printing during the COVID-19 pandemic. Nat. Rev. Mater. 2020, 5, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Paull, B.; Breadmore, M.C.; Lewis, T.; Guijt, R.M. 3D printed microfluidic devices: Enablers and barriers. Lab A Chip Miniat. Chem. Biol. 2016, 16, 1993–2013. [Google Scholar] [CrossRef]
- Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Ebrahimi Warkiani, M.; Asadnia, M.; Jin, D. 3D printing of inertial microfluidic devices. Sci. Rep. 2020, 10, 5929. [Google Scholar] [CrossRef]
- Saghir, N.; Aggarwal, A.; Soneji, N.; Valencia, V.; Rodgers, G.; Kurian, T. A comparison of manual electrocardiographic interval and waveform analysis in lead 1 of 12-lead ECG and Apple Watch ECG: A validation study. Cardiovasc. Digit. Health J. 2020, 1, 30–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, B.; Hojaiji, H.; Wang, Z.; Lin, S.; Yeung, C.; Lin, H.; Nguyen, P.; Chiu, K.; Salahi, K.; et al. A wearable freestanding electrochemical sensing system. Sci. Adv. 2020, 6, eaaz0007. [Google Scholar] [CrossRef]
- Tison, G.H.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.; Gladstone, R.A.; et al. Passive detection of atrial fibrillation using a commercially available smart watch. JAMA Cardiol. 2018, 3, 409–416. [Google Scholar] [CrossRef]
- Sequeira, N.; D’Souza, D.; Angaran, P.; Aves, T.; Dorian, P. Common wearable devices demonstrate variable accuracy in measuring heart rate during supraventricular tachycardia. Heart Rhythm. 2020, 17, 854–859. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, Y.; Zhou, M. AgNPs@CNTs/Ag hybrid films on thiolated PET substrate for flexible electronics. Chem. Eng. J. 2019, 368, 223–234. [Google Scholar] [CrossRef]
- Kondratov, A.P.; Nagornova, I.V.; Varepo, L.G. Tenso-resistive printed sensors forf lexible elements of systems and mechanisms. J. Phys. Conf. Ser. 2019, 1210, 012067. [Google Scholar] [CrossRef]
- Deganello, D.; Cherry, J.A.; Gethin, D.T.; Claypole, T.C. Impact of metered ink volume on reel-to-reel flexographic printed conductive networks for enhanced thin film conductivity. Thin Solid Film. 2012, 520, 2233–2237. [Google Scholar] [CrossRef]
- Deganello, D.; Cherry, J.A.; Gethin, D.T.; Claypole, T.C. Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Film. 2010, 518, 6113–6116. [Google Scholar] [CrossRef]
- Núñez, C.G.; Navaraj, W.T.; Polat, E.O.; Dahiya, R. Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 2017, 27, 1606287. [Google Scholar] [CrossRef]
- Walker, B.W.; Annabi, N.; Portillo Lara, R.; Hsiang Yu, C.; Kimball, W.; Mogadam, E. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 2019, 92, 135–157. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef]
- Available online: https://pinshape.com/items/40493-3d-printed-lesson-of-design-of-microfluidics-channels (accessed on 18 December 2022).
- El Moumen, A.; Tarfaoui, M.; Lafdi, K. Modelling of the temperature and residual stress fields during 3D printing of polymer composites. Int. J. Adv. Manuf. Technol. 2019, 104, 1661–1676. [Google Scholar] [CrossRef]
- Hilberman, M.; Hogan, J.S.; Peters, R.M. The effects of carbon dioxide on pulmonary mechanics in hyperventilating, normal volunteers. J. Thorac. Cardiovasc. Surg. 1976, 71, 268–273. [Google Scholar] [CrossRef]
- Kerolli-Mustafa, M.; Çadraku, H.; Musliu, A. Surface characterization of glas fibers made from jarosite waste using contact angle measurements. IFAC-PapersOnLine 2016, 49, 196–199. [Google Scholar] [CrossRef]
- Doronin, F.; Rudyak, Y.; Rytikov, G.; Evdokimov, A.; Nazarov, V. 3D-printed planar microfluidic device on oxyfluorinated PET-substrate. Polym. Test. 2021, 99, 107209. [Google Scholar] [CrossRef]
- Drozdov, S.; Nazarov, V.; Nozdrachev, S.; Rudyak, Y.; Rytikov, G. The polymer composites’ morphological structure simulation. Nanosyst. Phys. Chem. Math. 2017, 8, 137–145. [Google Scholar] [CrossRef]
- Petrushin, V.N.; Rudyak, Y.V.; Rytikov, G.O. The representativeness of the statistical data frame in the quantitative image analysis. ITM Web Conf. 2018, 18, 01007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doronin, F.; Rytikov, G.; Evdokimov, A.; Rudyak, Y.; Taranets, I.; Nazarov, V. The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing. Processes 2023, 11, 774. https://doi.org/10.3390/pr11030774
Doronin F, Rytikov G, Evdokimov A, Rudyak Y, Taranets I, Nazarov V. The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing. Processes. 2023; 11(3):774. https://doi.org/10.3390/pr11030774
Chicago/Turabian StyleDoronin, Fedor, Georgy Rytikov, Andrey Evdokimov, Yury Rudyak, Irina Taranets, and Victor Nazarov. 2023. "The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing" Processes 11, no. 3: 774. https://doi.org/10.3390/pr11030774
APA StyleDoronin, F., Rytikov, G., Evdokimov, A., Rudyak, Y., Taranets, I., & Nazarov, V. (2023). The Effect of Electro-Induced Multi-Gas Modification on Polymer Substrates’ Surface Structure for Additive Manufacturing. Processes, 11(3), 774. https://doi.org/10.3390/pr11030774