Comparative Life Cycle Environmental Impact Assessment of Fruit and Vegetable Waste Valorization by Anaerobic Digestion as an Alternative in a Mediterranean Market
Abstract
:1. Introduction
2. Methodology
2.1. Goal Definition and Scope
2.1.1. Description of the Scenarios
Scenario A: Landfill Disposal (LD)
Scenario B: AD Coupling with a Subsequent Composting Process (ADC)
2.1.2. System Expansion Approach
2.2. Life Cycle Inventory Data
2.2.1. Landfill Disposal (LC) Inventory Data
2.2.2. AD Coupling (ADC)—A Subsequent Composting Process—Inventory Data
2.3. Selected Impact Categories and Impact Assessment Methodology
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
ADC | Anaerobic digestion, a subsequent composting process |
C | Conveyor belt |
CO2 | Carbon dioxide |
CH4 | Methane |
FE | Freshwater eutrophication |
FEco | Freshwater ecotoxicity |
FPMF | Fine particulate matter formation |
FRS | Fossil resource scarcity |
FVW | Fruit and vegetable waste |
GW | Global warming |
HCT | Human carcinogenic toxicity |
I | Leachate input |
IR | Ionizing radiation |
LCA | Life cycle assessment |
LD | Landfill disposal |
LDP | Liquid-phase digestate |
LU | Land use |
ME | Marine eutrophication |
Meco | Marine ecotoxicity |
MRS | Mineral resource scarcity |
NCHT | Non-carcinogenic human toxicity |
N-NH4 | Ammonium nitrate |
N2O | Nitrous oxide |
OF | Ozone formation |
OFHH | Ozone formation, human health |
OFTE | Ozone formation, terrestrial ecosystem |
P | Pump |
R | Leachate recirculation |
SPD | Solid-phase digestate |
SOD | Stratospheric ozone depletion |
T | Transport |
TA | Terrestrial acidification |
TE | Terrestrial ecotoxicity |
WC | Water consumption |
References
- Mozhiarasi, V. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere 2022, 288, 132604. [Google Scholar] [CrossRef]
- Zia, M.; Ahmed, S.; Kumar, A. Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): Potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Convers. Biorefin. 2022, 12, 3573–3592. [Google Scholar] [CrossRef]
- Papirio, S.; Trujillo-Reyes, Á.; di Perta, Ε.S.; Kalogiannis, A.; Kassab, G.; Khoufi, S.; Sayadi, S.; Frunzo, L.; Esposito, G.; Fermoso, F.G.; et al. Exploring the Biochemical Methane Potential of Wholesale Market Waste from Jordan and Tunisia for a Future Scale-Up of Anaerobic Digestion in Amman and Sfax. Waste Biomass Valoriz. 2022, 13, 3887–3897. [Google Scholar] [CrossRef]
- Othman, A.B.; Wafi, T.; Fattoumi, F.; Besbes, M. Qualitative and quantitative characterization of municipal waste in T unisia: A case study of metropolitan T unis. Biofuels Bioprod. Biorefin. 2021, 15, 852–866. [Google Scholar] [CrossRef]
- Lewis, H.; Downes, J.; Verghese, K.; Young, G. Food Waste Opportunities within the Food Wholesale and Retail Sectors; Prepared for the NSW Environment Protection Authority by the Institute for Sustainable Futures at the University of Technology Sydney; Institute for Sustainable Futures, UTS: Sydney, Australia, 2017; pp. 1–99. [Google Scholar]
- Trujillo-Reyes, Á.; Serrano, A.; Cubero-Cardoso, J.; Fernández-Prior, Á.; Fermoso, F.G. Does seasonality of feedstock affect anaerobic digestion? Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Saber, M.; Khitous, M.; Kadir, L.; Abada, S.; Tirichine, N.; Moussi, K.; Saidi, A.; Akbi, A.; Aziza, M. Enhancement of organic household waste anaerobic digestion performances in a thermophilic pilot digester. Biomass Bioenergy 2021, 144, 105933. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.; Mayer, B.; Lins, L.; Triolo, J.M.; Flotats, X.; de Mendonça Costa, M.S.S. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 2018, 71, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Jimenez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Du, M.; Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 2017, 78, 272–279. [Google Scholar] [CrossRef]
- Goushki, M.N.; Shiri, M.A.; Nozari, M. Estimation of Gas Emissions using the LandGEM Model from the Landfill of Baft County, Kerman, Iran. Environ. Monit. Assess. 2023, 195, 1444. [Google Scholar] [CrossRef]
- Malet, N.; Pellerin, S.; Girault, R.; Nesme, T. Does anaerobic digestion really help to reduce greenhouse gas emissions? A nuanced case study based on 30 cogeneration plants in France. J. Clean. Prod. 2023, 384, 135578. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Dangi, M.B.; Malla, O.B.; Cohen, R.R.; Khatiwada, N.R.; Budhathoki, S. Life cycle assessment of municipal solid waste management in Kathmandu city, Nepal–An impact of an incomplete data set. Habitat Int. 2023, 139, 102895. [Google Scholar] [CrossRef]
- Bohra, A.; Nema, A.K.; Ahluwalia, P. Global warming potential of waste management options: Case study of Delhi. Int. J. Environ. Technol. Manag. 2012, 15, 346–362. [Google Scholar] [CrossRef]
- Kua, H.W.; He, X.; Tian, H.; Goel, A.; Xu, T.; Liu, W.; Yao, D.; Ramachandran, S.; Liu, X.; Tong, Y.W. Life cycle climate change mitigation through next-generation urban waste recovery systems in high-density Asian cities: A Singapore Case Study. Resour. Conserv. Recycl. 2022, 181, 106265. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Zou, D.; Fu, C.; Huang, Q.; Ni, M. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China. Waste Manag. Res. 2014, 32, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, H.; Thalla, A.K.; Kumar, S.; Kumar, R. Life cycle assessment of municipal solid waste management options for India. Bioresour. Technol. 2019, 288, 121515. [Google Scholar] [CrossRef]
- Sharma, B.K.; Chandel, M.K. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Manag. Res. 2017, 35, 79–91. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040; Environmental Management—Life Cycle Assessment: Principles and Framework. International Organization for Standarization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment: Requirements and Guidelines. International Organization for Standarization: Geneva, Switzerland, 2006.
- European CEOMED Project. Employing Circular Economy Approach for OFMSW Management within the Mediterranean Countries–CEOMED (Number grant A_B.4.2_0058). Available online: https://www.enicbcmed.eu/projects/ceomed (accessed on 9 September 2023).
- Hadjidimoulas, C. Methane Gas Emissions: Methods of Improving the Efficiency of the Biggest Landfill Gas Waste to Energy Project in the Middle East Installed in Amman, Jordan. Open Access Libr. J. 2018, 5, 1–35. [Google Scholar] [CrossRef]
- Cadena, J.; Mora, J.; Pérez, S. Análisis de viabilidad financiera de una central de generación de energía eléctrica a partir del biogás de vertedero. Sci. Tech. 2012, 2, 1–7. [Google Scholar]
- Bouallagui, H.; Touhami, Y.; Cheikh, R.B.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.M.; Alino, J.H.L.; Triolo, J.M.; Flotats, X.; de Mendonça Costa, M.S.S. Methane potential of fruit and vegetable waste: An evaluation of the semi-continuous anaerobic mono-digestion. Environ. Technol. 2018, 41, 921–930. [Google Scholar] [CrossRef]
- Masebinu, S.O.; Akinlabi, E.T.; Muzenda, E.; Aboyade, A.O.; Mbohwa, C. Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Manag. 2018, 75, 236–250. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Cecchi, F.; Llabrés, P.; Pavan, P. Anaerobic digestion of the Barcelona central food market organic wastes. Plant design and feasibility study. Bioresour. Technol. 1992, 42, 33–42. [Google Scholar] [CrossRef]
- Feliu, Á.; Flotats, X. Renewable Gases. An Emerging Energy Vector; Naturgy Foundation: Madrid, Spain, 2020; ISBN 978-84-09-20931-6. Available online: http://hdl.handle.net/2117/191139 (accessed on 9 September 2023).
- Serrano, A.; Villa-Gomez, D.; Fermoso, F.G.; Alonso-Fariñas, B. Is anaerobic digestion a feasible alternative to the combustion of olive mill solid waste in terms of energy production? A critical review. Biofuels Bioprod. Biorefining 2021, 15, 150–162. [Google Scholar] [CrossRef]
- Steubing, B.; Wernet, G.; Reinhard, J.; Bauer, C.; Moreno-Ruiz, E. The ecoinvent database version 3 (part II): Analyzing LCA results and comparison to version 2. Int. J. Life Cycle Assess. 2016, 21, 1269–1281. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Ahlgren, S.; Baky, A.; Bernesson, S.; Nordberg, Å.; Norén, O.; Hansson, P.-A. Ammonium nitrate fertiliser production based on biomass–environmental effects from a life cycle perspective. Bioresour. Technol. 2008, 99, 8034–8041. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Kim, J.I.; Park, K.M.; Chun, S.K. Ammonium nitrate-impregnated woodchips: A slow-release nitrogen fertilizer for plants. J. Wood Sci. 2011, 57, 295–301. [Google Scholar] [CrossRef]
- Fertilizer Europe. The European Fertilizer Manufacturers Association. Available online: https://www.fertilizerseurope.com/fertilizers-in-europe/types-of-fertilizer/ (accessed on 24 June 2022).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the Natioanl Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006.
- Nzeadibe, T.C.; Ayadiuno, R.U.; Akukwe, T.I. Solid waste governance in Owerri urban area, Nigeria: Problems and prospects. Waste Manag. 2010, 30, 355–357. [Google Scholar]
- De la Vega Mendia, V. Planta de Separación y Clasificación y Estación de Transferencia de Residuos Sólidos Urbanos para la Villa 31; Instituto de Investigaciones e Ingeniería Ambiental, Universidad Nacional de San Martín: San Martín, Argentina, 2020. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukunda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019.
- Richard, E.N.; Hilonga, A.; Machunda, R.L.; Njau, K.N. Life cycle analysis of potential municipal solid wastes management scenarios in Tanzania: The case of Arusha City. Sustain. Environ. Res. 2021, 31, 1. [Google Scholar] [CrossRef]
- FAM. Industrial Food Cutting Solutions. Available online: https://www.fam.be/es/machine/tridis180 (accessed on 7 July 2021).
- Zirkler, D.; Peters, A.; Kaupenjohann, M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass Bioenergy 2014, 67, 89–98. [Google Scholar] [CrossRef]
- Hahn, H.; Hoffstede, U. Final Assessment Report on Residual Materials; Fraunhofer Institute for Wind Energy and Energy System Technology: Bremerhaven, Germany, 2010. [Google Scholar]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. J. Environ. Manag. 2019, 233, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. Correction to: ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2020, 25, 1635. [Google Scholar] [CrossRef]
- Boucher, O.; Friedlingstein, P.; Collins, B.; Shine, K.P. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 2009, 4, 044007. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, S.; Yin, J.; Feng, H.; Wang, M.; Chen, T. Resource potential and global warming potential of fruit and vegetable waste in China based on different treatment strategies. Waste Manag. 2022, 140, 225–232. [Google Scholar] [CrossRef]
- Miramontes-Martínez, L.R.; Rivas-García, P.; Briones-Cristerna, R.A.; Abel-Seabra, J.E.; Padilla-Rivera, A.; Botello-Álvarez, J.E.; Alcalá-Rodríguez, M.M.; Levasseur, A. Potential of electricity generation by organic wastes in Latin America: A techno-economic-environmental analysis. Biomass Convers. Biorefin. 2022, 1–12. [Google Scholar] [CrossRef]
Landfill Disposal (LD) | ||
Outcomes | Credits for avoided products | Equivalence ratio |
Electricity | Jordan electric mix | 1:1 (kWh) |
AD coupling with a subsequent composting process (ADC) | ||
Outcomes | Credits for avoided products | Equivalence ratio |
Electricity | Jordan electric mix | 1:1 (kWh) |
Total nitrogen from liquid biofertilizer | Total nitrogen from ammonium nitrate | 1:1 (kg) |
Total nitrogen from compost | Total nitrogen from ammonium nitrate | 1:1 (kg) |
Current | Category | Value per Functional Unit | Landfill Disposal | AD Coupling with a Subsequent Composting Process |
---|---|---|---|---|
Input | FVW | kg/d | 5000 | 5000 |
Diesel | ||||
Consumed by truck | L diesel/d | 45.83 | n.a | |
Consumed by turning | TJ diesel/d | n.a | 4.37 × 10−5 | |
Transport | tkm/d | 112.5 | 27.5 | |
Electricity consumed | kWh/d | 2.074 | n.a | |
Output | Emission to soil | |||
Carbon | kg C/d | 23.25 | n.a | |
Nitrogen | kg N/d | 0.95 | n.a | |
Emissions to air | ||||
CO2 (fossil) | kg CO2/d | 123 | 3.24 | |
N2O | kg N2O/d | 0.00647 | 0.000171 | |
CH4 | kg CH4/d | 0.00647 | 0.000171 | |
CH4 disposal cells | kg CH4/d | 18.3 | n.a | |
NH3 | kg NH3/d | n.a | 1.87 | |
Liquid biofertilizer | kg/d | n.a | 3058 | |
Compost | kg/d | n.a | 1542 | |
Electric energy generated a | kWh/d | 217 | 1113 |
Feedstock | Location | Functional Unit | Scenarios | Principal Product * | Methodology | Software and Database | Impact Category Evaluated and Result | Ref. |
---|---|---|---|---|---|---|---|---|
FVW | China | 1 ton of FVW | 3 scenarios: | CML 2001–2016 | Not indicated | 1 category: GW (kg CO2 eq./t) | [47] | |
AD | Electric power from biogas (89.7 kWh) | AD: −31.0 | ||||||
Incineration | Electric power (82.6 kWh) | Incineration: 141.7 | ||||||
Ensiling | Animal feeding (1639 kg) | Ensiling: −17.9 | ||||||
FVW in co-digestion with slaughterhouse waste | Monterrey Metropolitan Area (Mexico) | 1 ton of FVW | 5AD scenarios varying digestor capacity and digestor number | Electricity (116.2 kWh) | Midpoint CCI—IPCC 2013 GWP 100y | SimaPro® 7.3.3 software. Ecoinvent database v 3.3 | 1 category: GW (kg CO2 eq./t) | [48] |
Heat (178.0 kWh) | AD: −2.8 | |||||||
Solid biofertilizer (1857 kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Reyes, Á.; Jiménez-Páez, E.; Serrano, A.; Kassab, G.; Fermoso, F.G.; Alonso-Fariñas, B. Comparative Life Cycle Environmental Impact Assessment of Fruit and Vegetable Waste Valorization by Anaerobic Digestion as an Alternative in a Mediterranean Market. Processes 2023, 11, 3397. https://doi.org/10.3390/pr11123397
Trujillo-Reyes Á, Jiménez-Páez E, Serrano A, Kassab G, Fermoso FG, Alonso-Fariñas B. Comparative Life Cycle Environmental Impact Assessment of Fruit and Vegetable Waste Valorization by Anaerobic Digestion as an Alternative in a Mediterranean Market. Processes. 2023; 11(12):3397. https://doi.org/10.3390/pr11123397
Chicago/Turabian StyleTrujillo-Reyes, Ángeles, Elena Jiménez-Páez, Antonio Serrano, Ghada Kassab, Fernando G. Fermoso, and Bernabé Alonso-Fariñas. 2023. "Comparative Life Cycle Environmental Impact Assessment of Fruit and Vegetable Waste Valorization by Anaerobic Digestion as an Alternative in a Mediterranean Market" Processes 11, no. 12: 3397. https://doi.org/10.3390/pr11123397