Research on the Declining Trend of Shale Gas Production Based on Transfer Learning Methods
Abstract
:1. Introduction
2. Methods Section
2.1. Classic Decline Production Model
2.1.1. Arps Model
- (1)
- The removal of outliers in production data
- (2)
- Determining the values of decline rate ‘’, decline exponent ‘’, and initial production ‘’
2.1.2. Duong Model
- (1)
- The removal of outliers from production data
- (2)
- Determining the values for the decline coefficient ‘a’ and the exponential coefficient ‘m’
2.1.3. PLE Model
- (1)
- Outlier removal from production data
- (2)
- The nonlinear fitting of production parameters
2.2. Hierarchical Interpolation
- (1)
- Multi-Rate Signal Sampling
- (2)
- Nonlinear Regression
- (3)
- Interpolation layer
2.3. Transfer Learning Model
3. Results
3.1. Data and Model Parameters
3.1.1. Data
3.1.2. Model Prediction Structure
3.1.3. Model Parameters and Error Evaluation
- (1)
- The evaluation indicators of prediction result error are the mean absolute error (MAE) and the mean absolute percentage error (MAPE). The formulas are shown in Equations (15) and (16):
- (2)
- The parameters of the model are shown in Table 3. where the input dimension and output dimension, respectively, represent the input duration required by the model and the prediction duration of the model.
3.2. Results and Discussion
3.2.1. Results of Classic Decline Production Model
- (1)
- Discussions of Well 003-22278
- (2)
- Discussions of well 063-37010
3.2.2. Results of Transfer Learning Model
3.2.3. Comparative Analysis of Mainstream Predictive Models
3.2.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. An Investigation of Long Range Reliance on Shale Oil and Shale Gas Production in the U.S. Market. Energy 2020, 195, 116933. [Google Scholar] [CrossRef]
- Caporin, M.; Fontini, F. The Long-Run Oil–Natural Gas Price Relationship and the Shale Gas Revolution. Energy Econ. 2017, 64, 511–519. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Williams-Kovacs, J.D.; Qanbari, F.; Behmanesh, H.; Heidari Sureshjani, M. History-Matching and Forecasting Tight/Shale Gas Condensate Wells Using Combined Analytical, Semi-Analytical, and Empirical Methods. J. Nat. Gas Sci. Eng. 2015, 26, 1620–1647. [Google Scholar] [CrossRef]
- Lee, J.; Sidle, R. Gas-Reserves Estimation in Resource Plays. SPE Econ. Manag. 2010, 2, 86–91. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Sun, Q.; Jiang, X.; Yu, R.; Kang, L.; Wang, X. A Logical Growth Model Considering the Influence of Shale Gas Reservoirs and Development Characteristics. Nat. Gas Ind. B 2020, 7, 656–663. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Yuan, Z.; Huang, H.; Jiang, Y.; Li, J. Hybrid deep neural networks for reservoir production prediction. J. Pet. Sci. Eng. 2021, 197, 108111. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, H. Production performance forecasting method based on multivariate time series and vector autoregressive machine learning model for waterflooding reservoirs. Pet. Explor. Dev. 2021, 48, 201–211. [Google Scholar] [CrossRef]
- Jiang, J.; Younis, R.M. A Multimechanistic Multicontinuum Model for Simulating Shale Gas Reservoir with Complex Fractured System. Fuel 2015, 161, 333–344. [Google Scholar] [CrossRef]
- Micheal, M.; Xu, W.; Jin, J.; Yu, H.; Liu, J.; Jiang, W.; Liu, H.; Wu, H. A Multi-Scale Quadruple-Continuum Model for Production Evaluation of Shale Gas Reservoirs Considering Complex Gas Transfer Mechanisms and Geomechanics. J. Pet. Sci. Eng. 2022, 213, 110419. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, Y.; Liu, J.; Wei, M.; Elsworth, D. A Gaussian Decomposition Method and Its Applications to the Prediction of Shale Gas Production. Fuel 2018, 224, 331–347. [Google Scholar] [CrossRef]
- Kenomore, M.; Hassan, M.; Malakooti, R.; Dhakal, H.; Shah, A. Shale Gas Production Decline Trend over Time in the Barnett Shale. J. Pet. Sci. Eng. 2018, 165, 691–710. [Google Scholar] [CrossRef]
- He, Y.-W.; He, Z.-Y.; Tang, Y.; Xu, Y.-J.; Long, J.-C.; Sepehrnoori, K. Shale Gas Production Evaluation Framework Based on Data-Driven Models. Pet. Sci. 2023, 20, 1659–1675. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Xiong, Y.; Liu, Y.; Cui, X.; Lei, G. A Data-Driven Shale Gas Production Forecasting Method Based on the Multi-Objective Random Forest Regression. J. Pet. Sci. Eng. 2021, 196, 107801. [Google Scholar] [CrossRef]
- Desbordes, J.K.; Zhang, K.; Xue, X.; Ma, X.; Luo, Q.; Huang, Z.; Hai, S.; Jun, Y. Dynamic Production Optimization Based on Transfer Learning Algorithms. J. Pet. Sci. Eng. 2022, 208, 109278. [Google Scholar] [CrossRef]
- Alolayan, O.S.; Raymond, S.J.; Montgomery, J.B.; Williams, J.R. Towards Better Shale Gas Production Forecasting Using Transfer Learning. Upstream Oil Gas Technol. 2021, 9, 100072. [Google Scholar] [CrossRef]
- Li, X.; Xie, H.; Lau, R.Y.K.; Wong, T.-L.; Wang, F.-L. Stock Prediction via Sentimental Transfer Learning. IEEE Access 2018, 6, 73110–73118. [Google Scholar] [CrossRef]
- Zhai, N.; Zhou, X. Temperature Prediction of Heating Furnace Based on Deep Transfer Learning. Sensors 2020, 20, 4676. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, J.; Yuan, H.; Gao, T.; Jiang, H.; Yan, J.; Wenzhong Gao, D.; Wang, F.-Y. Black Swan Event Small-Sample Transfer Learning (BEST-L) and Its Case Study on Electrical Power Prediction in COVID-19. Appl. Energy 2022, 309, 118458. [Google Scholar] [CrossRef]
- Pacis, F.J.; Ambrus, A.; Alyaev, S.; Khosravanian, R.; Kristiansen, T.G.; Wiktorski, T. Improving Predictive Models for Rate of Penetration in Real Drilling Operations through Transfer Learning. J. Comput. Sci. 2023, 72, 102100. [Google Scholar] [CrossRef]
- Fu, J.; Liu, W.; Zheng, X.; Han, X. Transfer Forest: A Deep Forest Model Based on Transfer Learning for Early Drilling Kick Detection. Energies 2023, 16, 2100. [Google Scholar] [CrossRef]
- Yao, J.; Liang, W.; Xiong, J. Novel Intelligent Diagnosis Method of Oil and Gas Pipeline Defects with Transfer Deep Learning and Feature Fusion. Int. J. Press. Vessel. Pip. 2022, 200, 104781. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.; Wang, L.; Zhang, H.; Zhang, L.; Yao, J.; Yang, Y. Fault Diagnosis Method for Sucker Rod Well with Few Shots Based on Meta-Transfer Learning. J. Pet. Sci. Eng. 2022, 212, 110295. [Google Scholar] [CrossRef]
- Arps, J.J. Analysis of Decline Curves. Trans. AIME 1945, 160, 228–247. [Google Scholar] [CrossRef]
- Duong, A.N. Rate-Decline Analysis for Fracture-Dominated Shale Reservoirs. SPE Reserv. Eval. Eng. 2011, 14, 377–387. [Google Scholar] [CrossRef]
- Ilk, D.; Rushing, J.A.; Perego, A.D.; Blasingame, T.A. Exponential vs. Hyperbolic Decline in Tight Gas Sands—Understanding the Origin and Implications for Reserve Estimates Using Arps’ Decline Curves. In Proceedings of the All Days, Denver, CO, USA, 21–24 September 2008; p. SPE-116731-MS. [Google Scholar]
- Challu, C.; Olivares, K.G.; Oreshkin, B.N.; Garza, F.; Mergenthaler-Canseco, M.; Dubrawski, A. N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Available online: https://arxiv.org/pdf/2201.12886 (accessed on 1 May 2023).
- Yang, Q.; Zhang, Y.; Dai, W.; Pan, S.J. Transfer Learning, 1st ed.; Cambridge University Press: Cambridge, UK, 2020; ISBN 978-1-139-06177-3. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer Learning Using Computational Intelligence: A Survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Song, T.; Li, F.; Chen, R.; Lu, Y.; Chen, X.; Xu, Q.; Wang, C.; Wang, Y. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment. Acta Pet. Sin. 2022, 43, 1687–1701. [Google Scholar]
- Yang, R.; Liu, X.; Yu, R.; Hu, Z.; Duan, X. Long Short-Term Memory Suggests a Model for Predicting Shale Gas Production. Appl. Energy 2022, 322, 119415. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Zhang, Y.; Zhang, D.; Zhang, M.; Xue, J. Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network. Neural Process. Lett. 2020, 52, 1485–1500. [Google Scholar] [CrossRef]
- Fu, K.; Li, H.; Deng, P. Chaotic Time Series Prediction Using DTIGNet Based on Improved Temporal-Inception and GRU. Chaos Solitons Fractals 2022, 159, 112183. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, K.; Huang, Y.; Zhu, Y.; Chen, B. Parallel Spatio-Temporal Attention-Based TCN for Multivariate Time Series Prediction. Neural Comput. Appl. 2023, 35, 13109–13118. [Google Scholar] [CrossRef]
Washington | Susquehanna | Greene | Bradford | Tioga | Lycoming | Butler | Westmoreland | Fayette | Wyoming | Armstrong |
---|---|---|---|---|---|---|---|---|---|---|
2001 | 2000 | 1633 | 1593 | 1134 | 1105 | 684 | 388 | 357 | 353 | 339 |
Allegheny | Mercer | Jefferson | Indiana | Clarion | Somerset | Forest | Blair | Cambria | Venango | Warren |
---|---|---|---|---|---|---|---|---|---|---|
188 | 58 | 53 | 51 | 44 | 20 | 18 | 6 | 5 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, M.; Xin, X.; Yu, G.; Gong, Y.; Liu, Y.; Xu, P. Research on the Declining Trend of Shale Gas Production Based on Transfer Learning Methods. Processes 2023, 11, 3105. https://doi.org/10.3390/pr11113105
Ni M, Xin X, Yu G, Gong Y, Liu Y, Xu P. Research on the Declining Trend of Shale Gas Production Based on Transfer Learning Methods. Processes. 2023; 11(11):3105. https://doi.org/10.3390/pr11113105
Chicago/Turabian StyleNi, Mingcheng, Xiankang Xin, Gaoming Yu, Yugang Gong, Yu Liu, and Peifu Xu. 2023. "Research on the Declining Trend of Shale Gas Production Based on Transfer Learning Methods" Processes 11, no. 11: 3105. https://doi.org/10.3390/pr11113105
APA StyleNi, M., Xin, X., Yu, G., Gong, Y., Liu, Y., & Xu, P. (2023). Research on the Declining Trend of Shale Gas Production Based on Transfer Learning Methods. Processes, 11(11), 3105. https://doi.org/10.3390/pr11113105