DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves
Abstract
1. Introduction
2. The Proposed Method
2.1. Data Preprocessing
2.2. Sample Balance Treatment
2.3. Layering Recognition
3. Result Calibration
4. Result and Discussion
4.1. Targeted Stratigraphic Formations and Sub-Divisions
4.2. Experimental Data
4.3. Experimental Results and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
DRAG | a novel deep belief forest-based automatic layering recognition method for logging curves |
DBF | Deep belief forest |
PCA | Principal component analysis |
GAN | Generative adversarial network |
FCNN | Fully convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory |
C-LSTM | Convolutional long short-term memory |
GRU | Gated recurrent unit neural networks |
BPNN | Backpropagation neural network |
The normalized score of the c principal component of the i sample | |
The score of the c principal component of sample i | |
The maximum score of the c principal component | |
The minimum score of the c principal component | |
The proportion of the c principal component in sample i | |
The information entropy of the c principal component | |
The weight of the c principal component | |
The weight of the f principal component | |
The comprehensive score of principal components based on information entropy | |
The amplitude | |
The frequency | |
The actual log curve | |
The generated log curve | |
Predicted confidence threshold of layer t | |
The cross-validation error rate of layer t | |
α | Hyperparameter for indicating the cross-verification error rate |
The prediction confidence of of the sample | |
The classification category of the stratum | |
The final classification result | |
Yn | The stratigraphic classification result of the surrounding well |
GR | Gamma ray |
AC | Acoustic transit time |
DEN | Bulk density |
Rt | Deep resistivity |
MAE | Mean absolute error |
RMSE | Root mean square error |
R2 | Coefficient of determination |
References
- Karimi, A.M.; Sadeghnejad, S.; Rezghi, M. Well-to-well correlation and identifying lithological boundaries by principal component analysis of well-logs. Comput. Geosci. 2021, 157, 104942. [Google Scholar] [CrossRef]
- Zaitouny, A.; Small, M.; Hill, J.; Emelyanova, I.; Ben Clennell, M. Fast automatic detection of geological boundaries from multivariate log data using recurrence. Comput. Geosci. 2020, 135, 104362. [Google Scholar] [CrossRef]
- Partovi, S.M.A.; Sadeghnejad, S. Geological boundary detection from well-logs: An efficient approach based on pattern recognition. J. Pet. Sci. Eng. 2019, 176, 444–455. [Google Scholar] [CrossRef]
- Behdad, A. A step toward the practical stratigraphic automatic correlation of well logs using continuous wavelet transform and dynamic time warping technique. J. Appl. Geophys. 2019, 167, 26–32. [Google Scholar] [CrossRef]
- Liu, L.-L.; Wang, Y. Quantification of stratigraphic boundary uncertainty from limited boreholes and its effect on slope stability analysis. Eng. Geol. 2022, 306, 106770. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Liu, J.; Wang, X.; Chen, Q.; Zhao, L.; Tian, L.; Wang, Y. A method for identifying the thin layer using the wavelet transform of density logging data. J. Pet. Sci. Eng. 2018, 160, 433–441. [Google Scholar] [CrossRef]
- Dobróka, M.; Szabó, N.P. Interval inversion of well-logging data for automatic determination of formation boundaries by using a float-encoded genetic algorithm. J. Pet. Sci. Eng. 2012, 86–87, 144–152. [Google Scholar] [CrossRef]
- Omeragic, D.; Polyakov, V.; Shetty, S.; Brot, B.; Habashy, T.; Mahesh, A.; Friedel, T.; Denichou, J. Integration of well logs and reservoir geomodels for formation evaluation in high-angle and horizontal wells. In Proceedings of the SPWLA 52nd Annual Logging Sym-Posium, Colorado Springs, CO, USA, 14–18 May 2011; OnePetro: Richardson, TX, USA, 2011. [Google Scholar]
- Maiti, S.; Tiwari, R. Automatic detection of lithologic boundaries using the Walsh transform: A case study from the KTB borehole. Comput. Geosci. 2005, 31, 949–955. [Google Scholar] [CrossRef]
- Luthi, S.M.; Bryant, I.D. Well-log correlation using a back-propagation neural network. J. Int. Assoc. Math. Geol. 1997, 29, 413–425. [Google Scholar] [CrossRef]
- Delfiner, P.; Peyret, O.; Serra, O. Automatic determination of lithology from well logs. SPE Form. Eval. 1987, 2, 303–310. [Google Scholar] [CrossRef]
- Shaw, B.R.; Cubitt, J.M. Stratigraphic correlation of well logs: An automated approach. In Geomathematical and Petro-Physical Studies in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1979; pp. 127–148. [Google Scholar]
- Silversides, K.L.; Melkumyan, A.; Wyman, D.A.; Hatherly, P.J.; Nettleton, E. Detection of geological structure using gamma logs for autonomous mining. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1577–1582. [Google Scholar] [CrossRef]
- Reading, A.M.; Gallagher, K. Transdimensional change-point modeling as a tool to investigate uncertainty in applied ge-ophysical inference: An example using borehole geophysical logs. Geophysics 2013, 78, WB89–WB99. [Google Scholar] [CrossRef][Green Version]
- Sen, D.; Texas A&M University; Ong, C.; Kainkaryam, S.; Sharma, A.; Houston, T. Automatic detection of anomalous density measurements due to wellbore cave-in. Petrophysics 2020, 61, 434–449. [Google Scholar] [CrossRef]
- Gill, D.; Shomrony, A.; Fligelman, H. Numerical zonation of log suites and logfacies recognition by multivariate clustering. Aapg. Bull. 1993, 77, 1781–1791. [Google Scholar]
- Smith, J.H. A method for calculating pseudo sonics from e-logs in a clastic geologic setting. Gcags Trans. 2007, 57, 675–678. [Google Scholar]
- Merembayev, T.; Yunussov, R.; Yedilkhan, A. Machine learning algorithms for classification geology data from well logging. In Proceedings of the 2018 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 29 November–1 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 206–212. [Google Scholar]
- Partovi, S.M.A.; Sadeghnejad, S. Reservoir rock characterization using wavelet transform and fractal dimension. Iran. J. Chem. Chem. Eng. 2018, 37, 223–233. [Google Scholar]
- Belozerov, B.; Bukhanov, N.; Egorov, D.; Zakirov, A.; Osmonalieva, O.; Golitsyna, M.; Reshytko, A.; Semenikhin, A.; Shindin, E.; Lipets, V. Automatic well log analysis across priobskoe field using machine learning methods. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 15–17 October 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Partovi, S.M.A.; Sadeghnejad, S. Fractal parameters and well-logs investigation using automated well-to-well correlation. Comput. Geosci. 2017, 103, 59–69. [Google Scholar] [CrossRef]
- Gulbrandsen, M.L.; Cordua, K.S.; Bach, T.; Hansen, T.M. Smart Interpretation–automatic geological interpretations based on supervised statistical models. Comput. Geosci. 2017, 21, 427–440. [Google Scholar] [CrossRef]
- Gonzalez, A.; Kanyan, L.; Heidari, Z. Integrated multi-physics workflow for automatic rock classification and formation evaluation using multi-scale image analysis and conventional well logs. In Proceedings of the SPWLA 60th Annual Logging Symposium, The Woodlands, TX, USA, 15–19 June 2019. [Google Scholar] [CrossRef]
- Loginov, G.; Petrov, A. Automatic detection of geoelectric boundaries according to lateral logging sounding data by applying a deep convolutional neural network. Russ. Geol. Geophys. 2019, 60, 1319–1325. [Google Scholar] [CrossRef]
- Lapkovsky, V.; Istomin, A.; Kontorovich, V.; Berdov, V. Correlation of well logs as a multidimensional optimization problem. Russ. Geol. Geophys. 2015, 56, 487–492. [Google Scholar] [CrossRef]
- Gardner, G.H.F.; Gardner, L.W.; Gregory, A.R. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics 1974, 39, 770–780. [Google Scholar] [CrossRef]
- Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [Google Scholar] [CrossRef]
- Zhang, D.; Yuntian, C.; Jin, M. Synthetic well logs generation via Recurrent Neural Networks. Pet. Explor. Dev. 2018, 45, 629–639. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, J.; Wang, X.; Wang, J.; Liao, W. Acoustic log reconstruction based on bidirectional Gated Recurrent Unit (GRU) neural network. Prog. Geophys. 2022, 37, 357–366. [Google Scholar]
- Wood, D.A. Carbonate/siliciclastic lithofacies classification aided by well-log derivative, volatility and sequence boundary attributes combined with machine learning. Earth Sci. Inform. 2022, 15, 1699–1721. [Google Scholar] [CrossRef]
- Anvari, K.; Mousavi, A.; Sayadi, A.R.; Sellers, E.; Salmi, E.F. Automatic detection of rock boundaries using a hybrid recurrence quantification analysis and machine learning techniques. Bull. Eng. Geol. Environ. 2022, 81, 398. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Li, X. Machine learning of geological details from borehole logs for development of high-resolution subsurface geological cross-section and geotechnical analysis. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2021, 16, 2–20. [Google Scholar] [CrossRef]
- Tözün, K.A.; Özyavaş, A. Automatic detection of geological lineaments in central Turkey based on test image analysis using satellite data. Adv. Space Res. 2022, 69, 3283–3300. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, T.; Guo, W.; Liang, P.; Cheng, F. Quantitative Paleogeographic Mapping and Sedimentary Microfacies Divi-sion in a Deep-water Marine Shale Shelf: Case study of Wufeng-Longmaxi shale, southern Sichuan Basin, China. Acta Sedimentol. Sin. 2022, 40, 1728–1744. [Google Scholar]
- Hongyan, W.; Zhensheng, S.; Shasha, S.; Leifu, Z.; Aarnes, I. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery. Oil Gas Geol. 2021, 42, 66–75. [Google Scholar]
- Shi, Z.; Dong, D.; Wang, H.; Sun, S.; Wu, J. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 888–900. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Zhao, Q.; Liu, D.; Sun, S.; Guo, W.; Liang, F.; Lin, C.; Wang, X. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas. Energy Geosci. 2020, 1, 124–133. [Google Scholar] [CrossRef]
- Girolami, M.; Mischak, H.; Krebs, R. Analysis of complex, multidimensional datasets. Drug Discov. Today Technol. 2006, 3, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal Inf. Process. 2013, 4, 173. [Google Scholar] [CrossRef]
- Gonog, L.; Zhou, Y. A review: Generative adversarial networks. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 505–510. [Google Scholar]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2019, 171, 115454. [Google Scholar] [CrossRef]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Rajeswari, S.; Suthendran, K. C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud. Comput. Electron. Agric. 2019, 156, 530–539. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Feng, J. Deep Forest: Towards an Alternative to Deep Neural Networks. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, VIC, Australia, 19–25 August 2017; pp. 3553–3559. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678 2016. [Google Scholar]
- Loh, W.-Y.; Eltinge, J.; Cho, M.J.; Li, Y. Classification and regression trees and forests for incomplete data from sample surveys. Stat. Sin. 2018, 29, 431–453. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Fedus, W.; Goodfellow, I.; Dai, A.M. Maskgan: Better text generation via filling in the_. arXiv 2018, arXiv:1801.07736 2018. [Google Scholar]
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Goodfellow, I.J. On distinguishability criteria for estimating generative models. arXiv 2014, arXiv:1412.6515 2014. [Google Scholar]
- Zhang, C.; Zuo, R. Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network. Ore Geol. Rev. 2021, 136, 104264. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Jervis, M.; Nivlet, P. 3D seismic facies classification using convolutional neural network and semi-supervised generative adversarial network. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019. [Google Scholar] [CrossRef]
- Fu, R.; Chen, J.; Zeng, S.; Zhuang, Y.; Sudjianto, A. Time Series Simulation by Conditional Generative Adversarial Net. arXiv 2019, arXiv:1904.11419. [Google Scholar] [CrossRef]
- Jo, H.; Santos, J.E.; Pyrcz, M.J. Rule-Based Models with Generative Adversarial Networks: A Deepwater Lobe. In Proceedings of the Deep Learning Example, 2019 AAPG Annual Convention and Exhibition, San Antonio, TX, USA, 15–20 September 2019. [Google Scholar]
- Nakayama, J.Y.; Ho, J.; Cartwright, E.; Simpson, R.; Hertzberg, V.S. Predictors of progression through the cascade of care to a cure for hepatitis C patients using decision trees and random forests. Comput. Biol. Med. 2021, 134, 104461. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, S.; Jung, M. Energy-efficient pupil tracking method and device based on simplification of cascade regression forest. Sensors 2021, 20, 5141. [Google Scholar]
- Johnson, S.L.; Henshaw, D.; Downing, G.; Wondzell, S.; Schulze, M.; Kennedy, A.; Cohn, G.; Schmidt, S.A.; Jones, J.A. Long-term hydrology and aquatic biogeochemistry data from H. J. Andrews Experimental Forest, Cascade Mountains, Oregon. Hydrol Process 2021, 35, e14187. [Google Scholar]
- Zheng, L.; Bao, Q.; Weng, S.; Tao, J.; Zhang, D.; Huang, L.; Zhao, J. Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 270, 120813. [Google Scholar] [CrossRef]
- Shao, M.; Zou, Y. Multi-spectral cloud detection based on a multi-dimensional and multi-grained dense cascade forest. J. Appl. Remote Sens. 2021, 15, 028507. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest. Mathematics 2022, 10, 787. [Google Scholar] [CrossRef]
- Runxuan, W.; Croft, R.A.C.; Patrick, S. Deep forest: Neural network reconstruction of intergalactic medium temperature. Mon. Not. R. Astron. Soc. 2022, 515, 1568–1579. [Google Scholar]
- Zhang, J.; Song, H. Multi-Feature Fusion for Weak Target Detection on Sea-Surface Based on FAR Controllable Deep Forest Model. Remote Sens. 2021, 13, 812. [Google Scholar] [CrossRef]
Well | Layer | Artificial Geological Boundary Identified Results | Proposed Method | GRU | BPNN | Random Forest | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | ||
Well A | L14 | 1273.471 | 1302.5 | 1274.058 | 1302.922 | 1273.956 | 1303.367 | 1279.607 | 1303.051 | 1274.081 | 1306.388 |
Well A | L13 | 1302.5 | 1311.652 | 1302.922 | 1311.677 | 1303.367 | 1312.749 | 1303.051 | 1305.885 | 1306.388 | 1313.845 |
Well A | L12 | 1311.652 | 1318.332 | 1311.677 | 1318.997 | 1312.749 | 1321.884 | 1305.885 | 1320.249 | 1313.845 | 1322.706 |
Well A | L11 | 1318.332 | 1320.368 | 1318.997 | 1320.597 | 1321.884 | 1322.138 | 1320.249 | 1322.236 | 1322.706 | 1326.11 |
Well A | W1 | 1320.368 | 1323 | 1320.597 | 1322.555 | 1322.138 | 1328.728 | 1322.236 | 1325.984 | 1326.11 | 1327.87 |
Well B | L14 | 2290.708 | 2321.879 | 2291.004 | 2322.636 | 2290.476 | 2322.676 | 2293.19 | 2325.156 | 2299.947 | 2316.072 |
Well B | L13 | 2321.879 | 2339.537 | 2322.636 | 2339.493 | 2322.676 | 2341.61 | 2325.156 | 2336.799 | 2316.072 | 2345.462 |
Well B | L12 | 2339.537 | 2345.506 | 2339.493 | 2345.201 | 2341.61 | 2343.233 | 2336.799 | 2347.478 | 2345.462 | 2346.248 |
Well B | L11 | 2345.506 | 2348.477 | 2345.201 | 2348.577 | 2343.233 | 2350.572 | 2347.478 | 2344.549 | 2346.248 | 2343.577 |
Well B | W1 | 2348.477 | 2357 | 2348.577 | 2356.591 | 2350.572 | 2354.883 | 2344.549 | 2361.742 | 2343.577 | 2357.78 |
Well C | L14 | 2906.318 | 2940.176 | 2906.81 | 2940.542 | 2908.149 | 2941.566 | 2908.784 | 2944.714 | 2907.024 | 2936.386 |
Well C | L13 | 2940.176 | 2954.237 | 2940.542 | 2953.414 | 2941.566 | 2952.814 | 2944.714 | 2951.976 | 2936.386 | 2957.748 |
Well C | L12 | 2954.237 | 2958.511 | 2953.414 | 2958.871 | 2952.814 | 2958.486 | 2951.976 | 2959.955 | 2957.748 | 2960.499 |
Well C | L11 | 2958.511 | 2959.96 | 2958.871 | 2959.993 | 2958.486 | 2960.405 | 2959.955 | 2964.13 | 2960.499 | 2962.396 |
Well C | W1 | 2959.96 | 2962.808 | 2959.993 | 2961.869 | 2960.405 | 2964.599 | 2964.13 | 2967.738 | 2962.396 | 2965.122 |
Well D | L14 | 2038.45 | 2073.933 | 2038.762 | 2072.952 | 2037.977 | 2069.651 | 2029.618 | 2071.743 | 2028.379 | 2074.321 |
Well D | L13 | 2073.933 | 2092.152 | 2072.952 | 2092.688 | 2069.651 | 2090.59 | 2071.743 | 2094.587 | 2074.321 | 2095.42 |
Well D | L12 | 2092.152 | 2101.53 | 2092.688 | 2100.649 | 2090.59 | 2100.941 | 2094.587 | 2102.906 | 2095.42 | 2102.095 |
Well D | L11 | 2101.53 | 2107.016 | 2100.649 | 2106.53 | 2100.941 | 2103.031 | 2102.906 | 2110.992 | 2102.095 | 2111.828 |
Well D | W1 | 2107.016 | 2111 | 2106.53 | 2111.796 | 2103.031 | 2113.375 | 2110.992 | 2109.787 | 2111.828 | 2108.992 |
Evaluation Index | Proposed Method | GRU | BPNN | Random Forest |
---|---|---|---|---|
MAE | 6.221 | 8.876 | 10.241 | 10.221 |
RMSE | 8.944 | 11.345 | 14.214 | 14.341 |
R2 | 0.932 | 0.911 | 0.834 | 0.831 |
Well | Layer | Artificial Geological Boundary Identified Results | Geological Boundary Identified by 1 Well Correlations after Deep Belief Forest Analysis | Geological Boundary Identified by 2 Well Correlations after Deep Belief Forest Analysis | Geological Boundary Identified by 3 Well Correlations after Deep Belief Forest Analysis | ||||
---|---|---|---|---|---|---|---|---|---|
Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | ||
Well A | L14 | 1273.471 | 1302.5 | 1281.022 | 1303.228 | 1274.81 | 1301.915 | 1274.058 | 1302.922 |
Well A | L13 | 1302.5 | 1311.652 | 1303.228 | 1313.349 | 1301.915 | 1314.614 | 1302.922 | 1311.677 |
Well A | L12 | 1311.652 | 1318.332 | 1313.349 | 1316.012 | 1314.614 | 1322.201 | 1311.677 | 1318.997 |
Well A | L11 | 1318.332 | 1320.368 | 1316.012 | 1321.495 | 1322.201 | 1323.094 | 1318.997 | 1320.597 |
Well A | W1 | 1320.368 | 1323 | 1321.495 | 1323.728 | 1323.094 | 1325.261 | 1320.597 | 1322.555 |
Well B | L14 | 2290.708 | 2321.879 | 2293.171 | 2320.868 | 2292.322 | 2322.993 | 2291.004 | 2322.636 |
Well B | L13 | 2321.879 | 2339.537 | 2320.868 | 2342.894 | 2322.993 | 2342.893 | 2322.636 | 2339.493 |
Well B | L12 | 2339.537 | 2345.506 | 2342.894 | 2348.412 | 2342.893 | 2345.719 | 2339.493 | 2345.201 |
Well B | L11 | 2345.506 | 2348.477 | 2348.412 | 2353.043 | 2345.719 | 2346.372 | 2345.201 | 2348.577 |
Well B | W1 | 2348.477 | 2357 | 2353.043 | 2355.871 | 2346.372 | 2357.055 | 2348.577 | 2356.591 |
Well C | L14 | 2906.318 | 2940.176 | 2898.726 | 2940.402 | 2905.641 | 2940.223 | 2906.81 | 2940.542 |
Well C | L13 | 2940.176 | 2954.237 | 2940.402 | 2952.837 | 2940.223 | 2956.697 | 2940.542 | 2953.414 |
Well C | L12 | 2954.237 | 2958.511 | 2952.837 | 2962.61 | 2956.697 | 2957.353 | 2953.414 | 2958.871 |
Well C | L11 | 2958.511 | 2959.96 | 2962.61 | 2957.152 | 2957.353 | 2963.454 | 2958.871 | 2959.993 |
Well C | W1 | 2959.96 | 2962.808 | 2957.152 | 2965.154 | 2963.454 | 2965.094 | 2959.993 | 2961.869 |
Well D | L14 | 2038.45 | 2073.933 | 2038.838 | 2073.495 | 2039.604 | 2071.56 | 2038.762 | 2072.952 |
Well D | L13 | 2073.933 | 2092.152 | 2073.495 | 2094.361 | 2071.56 | 2094.322 | 2072.952 | 2092.688 |
Well D | L12 | 2092.152 | 2101.53 | 2094.361 | 2098.649 | 2094.322 | 2102.831 | 2092.688 | 2100.649 |
Well D | L11 | 2101.53 | 2107.016 | 2098.649 | 2108.308 | 2102.831 | 2103.168 | 2100.649 | 2106.53 |
Well D | W1 | 2107.016 | 2111 | 2108.308 | 2109.049 | 2103.168 | 2111.777 | 2106.53 | 2111.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Zhu, Q.; Zhu, H.; Zhao, Q.; Shi, Z.; Zhao, S.; Zhang, C.; Wang, S. DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes 2023, 11, 2998. https://doi.org/10.3390/pr11102998
Zhou T, Zhu Q, Zhu H, Zhao Q, Shi Z, Zhao S, Zhang C, Wang S. DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes. 2023; 11(10):2998. https://doi.org/10.3390/pr11102998
Chicago/Turabian StyleZhou, Tianqi, Qingzhong Zhu, Hangyi Zhu, Qun Zhao, Zhensheng Shi, Shengxian Zhao, Chenglin Zhang, and Shanyu Wang. 2023. "DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves" Processes 11, no. 10: 2998. https://doi.org/10.3390/pr11102998
APA StyleZhou, T., Zhu, Q., Zhu, H., Zhao, Q., Shi, Z., Zhao, S., Zhang, C., & Wang, S. (2023). DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes, 11(10), 2998. https://doi.org/10.3390/pr11102998