A Time-Saving Approach to Parameter Studies in Microwave-Assisted Freeze Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Product
2.2. MFD System
2.3. Process Characterization
2.4. Drying Procedure
2.5. Process Parameters
- Single Minimum Frequency (1MF)—frequency displaying the global minimum of energy efficiency;
- Single Resonant Frequency (1RF)—frequency displaying the global maximum of energy efficiency;
- Six Equidistant Frequencies (6EF)—frequencies from 2400 MHz to 2500 MHz at an interval of 20 MHz;
- Six Resonant Frequencies (6RF)—frequencies with the highest local maxima of energy efficiency.
2.6. Sample Analysis
2.7. Statistical Analysis
3. Results
3.1. Comparison Termination MFD
3.2. Parameter Study
3.2.1. Chamber Pressure
3.2.2. Microwave Power
3.2.3. Microwave Frequency
3.3. Limitations and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Mujumdar, A.S.; Wang, S. Microwave freeze drying of sea cucumber (Stichopus japonicus). J. Food Eng. 2010, 96, 491–497. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Mujumdar, A.S.; Lim, R.-X. Comparison of four drying methods for re-structured mixed potato with apple chips. J. Food Eng. 2011, 103, 279–284. [Google Scholar] [CrossRef]
- Ambros, S.; Mayer, R.; Schumann, B.; Kulozik, U. Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability. Innov. Food Sci. Emerg. Technol. 2018, 48, 90–98. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, M.; Mujumdar, A.S.; Zhong, Q.; Wang, Z. Effect of microwave freeze drying on quality and energy supply in drying of barley grass. J. Sci. Food Agric. 2018, 98, 1599–1605. [Google Scholar] [CrossRef]
- Gitter, J.H.; Geidobler, R.; Presser, I.; Winter, G. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody. J. Pharm. Sci. 2018, 107, 2538–2543. [Google Scholar] [CrossRef]
- Gitter, J.H.; Geidobler, R.; Presser, I.; Winter, G. Microwave-Assisted Freeze-Drying of Monoclonal Antibodies: Product Quality Aspects and Storage Stability. Pharmaceutics 2019, 11, 674. [Google Scholar] [CrossRef]
- Ozcelik, M.; Heigl, A.; Kulozik, U.; Ambros, S. Effect of hydrocolloid addition and microwave-assisted freeze drying on the characteristics of foamed raspberry puree. Innov. Food Sci. Emerg. Technol. 2019, 56, 102183. [Google Scholar] [CrossRef]
- Sickert, T.; Kalinke, I.; Christoph, J.; Gaukel, V. Microwave-Assisted Freeze-Drying with Frequency-Based Control Concepts via Solid-State Generators: A Simulative and Experimental Study. Processes 2023, 11, 327. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, X.; Li, L.; Ren, G.; Wu, T.; Chen, J.; Ang, Y.; Guo, J.; Zhao, M. Effects of freeze-drying and microwave vacuum freeze-drying on the activity of IgY: From the perspective of protein structure. Dry. Technol. 2023, 41, 222–232. [Google Scholar] [CrossRef]
- Franks, F. Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm. 1998, 45, 221–229. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Gaukel, V.; Siebert, T.; Erle, U. Microwave-assisted drying. In The Microwave Processing of Foods; Elsevier: Amsterdam, The Netherlands, 2017; pp. 152–178. ISBN 9780081005286. [Google Scholar]
- Feng, H.; Tang, J.; Cavalieri, R.P.; Plumb, O.A. Heat and mass transport in microwave drying of porous materials in a spouted bed. AIChE J. 2001, 47, 1499–1512. [Google Scholar] [CrossRef]
- Clark, D.E.; Sutton, W.H. Microwave Processing of Materials. Annu. Rev. Mater. Sci. 1996, 26, 299–331. [Google Scholar] [CrossRef]
- Atuonwu, J.C.; Tassou, S.A. Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. J. Food Eng. 2018, 234, 1–15. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Yan, B.; Hong, T.; Yang, Y.; Zhu, H.; Wu, L.; Huang, K. Sweep Frequency Heating based on Injection Locked Magnetron. Processes 2019, 7, 341. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, Z.; Pedrow, P.D.; Sablani, S.S.; Tang, J. Microwave heating based on solid-state generators: New insights into heating pattern, uniformity, and energy absorption in foods. J. Food Eng. 2023, 357, 111650. [Google Scholar] [CrossRef]
- Assegehegn, G.; La Brito-de Fuente, E.; Franco, J.M.; Gallegos, C. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Adv. Food Nutr. Res. 2020, 93, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Pikal, M.J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 2004, 21, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Shi, M.H. Microwave Freeze Drying Characteristics of Beef. Dry. Technol. 1999, 17, 434–447. [Google Scholar] [CrossRef]
- Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J. Food Eng. 1998, 35, 369–380. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Mujumdar, A.S.; Sun, J.-C. Microwave Freeze–Drying Characteristics and Sensory Quality of Instant Vegetable Soup. Dry. Technol. 2009, 27, 962–968. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Mujumdar, A.S. Microwave Freeze-Drying Characteristics of Banana Crisps. Dry. Technol. 2010, 28, 1377–1384. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Liu, Y.; Mujumdar, A.S.; Liu, H. The energy consumption and color analysis of freeze/microwave freeze banana chips. Food Bioprod. Process. 2013, 91, 464–472. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Yang, P. Suitability of LF-NMR to analysis water state and predict dielectric properties of Chinese yam during microwave vacuum drying. LWT 2019, 105, 257–264. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kono, S. Monitoring of primary drying in the freeze-drying process using an open-ended coaxial microwave resonator. J. Food Eng. 2021, 289, 110163. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; ISBN 0470631554. [Google Scholar]
- Tang, Z.; Hong, T.; Liao, Y.; Chen, F.; Ye, J.; Zhu, H.; Huang, K. Frequency-selected method to improve microwave heating performance. Appl. Therm. Eng. 2018, 131, 642–648. [Google Scholar] [CrossRef]
- Yakovlev, V.V. Effect of frequency alteration regimes on the heating patterns in a solid-state-fed microwave cavity. J. Microw. Power Electromagn. Energy 2018, 52, 31–44. [Google Scholar] [CrossRef]
- Taghian Dinani, S.; Feldmann, E.; Kulozik, U. Effect of heating by solid-state microwave technology at fixed frequencies or by frequency sweep loops on heating profiles in model food samples. Food Bioprod. Process. 2021, 127, 328–337. [Google Scholar] [CrossRef]
- Yang, R.; Fathy, A.E.; Morgan, M.T.; Chen, J. Development of online closed-loop frequency shifting strategies to improve heating performance of foods in a solid-state microwave system. Food Res. Int. 2022, 154, 110985. [Google Scholar] [CrossRef]
- Yang, R.; Fathy, A.E.; Morgan, M.T.; Chen, J. Development of a complementary-frequency strategy to improve microwave heating of gellan gel in a solid-state system. J. Food Eng. 2022, 314, 110763. [Google Scholar] [CrossRef]
- Wexler, A. Vapor pressure formulation for ice. J. Res. Nat. Bur. Stand. Sect. A Phys. Chem. 1977, 81A, 5–20. [Google Scholar] [CrossRef]
- Rambhatla, S.; Pikal, M.J. Heat and mass transfer scale-up issues during freeze-drying, I: Atypical radiation and the edge vial effect. AAPS PharmSciTech 2003, 4, E14. [Google Scholar] [CrossRef]
- Morgan, S.P. Effect of Surface Roughness on Eddy Current Losses at Microwave Frequencies. J. Appl. Phys. 1949, 20, 352–362. [Google Scholar] [CrossRef]
- Chamchong, M.; Datta, A.K. Thawing of foods in a microwave oven: I. Effect of power levels and power cycling. J. Microw. Power Electromagn. Energy 1999, 34, 9–21. [Google Scholar] [CrossRef] [PubMed]
Comparison Termination | Parameter Study | |||
---|---|---|---|---|
Pressure | Power | Frequency | ||
Set chamber pressure /mbar | 0.5 | 0.2; 0.5; 1.0 | 0.5 | 0.5 |
Set forward power /W | 50 | 50 | 50 | 50 |
Activation ratio /− | 0.25 | 0.25 | 0.25; 0.50; 0.75; 1.00 | 0.25 |
Frequency-based control concept | 6EF | 6RF | 6RF | 1MF; 1RF; 6EF; 6RF |
Set Chamber Pressure /mbar | 0.2 | 0.5 | 1.0 |
---|---|---|---|
Process duration /s | 5029 ± 246 C | 5595 ± 60 B | 6196 ± 195 A |
Average chamber pressure /mbar | 0.19 ± 0.00 C | 0.47 ± 0.00 B | 0.87 ± 0.00 A |
Removed water total /g | 45.1 ± 0.3 | 45.1 ± 0.1 | 45.1 ± 0.0 |
Removed water before power application /g | 13.4 ± 1.3 A | 9.0 ± 0.2 B | 8.9 ± 0.7 B |
Average drying rate during power application /g/h | 22.71 ± 0.82 A | 23.24 ± 0.09 A | 21.03 ± 0.71 B |
Average specific forward power /W/g | 0.051 ± 0.006 A | 0.060 ± 0.001 A | 0.051 ± 0.003 A |
Average energy efficiency /% | 75.3 ± 0.5 B | 78.6 ± 0.8 A | 76.7 ± 0.3 B |
Average specific dissipated power /W/g | 0.038 ± 0.004 B | 0.047 ± 0.001 A | 0.039 ± 0.003 B |
Control Concept | 1MF | 1RF | 6EF | 6RF |
---|---|---|---|---|
Process duration /s | 9044 ± 337 A | 4744 ± 303 C | 6275 ± 93 B | 4413 ± 155 C |
Average chamber pressure /mbar | 0.47 ± 0.00 | 0.46 ± 0.01 | 0.47 ± 0.00 | 0.47 ± 0.00 |
Removed water total /g | 45.6 ± 0.6 | 45.5 ± 0.3 | 46.3 ± 1.0 | 45.4 ± 0.2 |
Removed water before power application /g | 7.9 ± 0.3 A | 8.1 ± 1.0 A | 8.2 ± 1.8 A | 7.4 ± 0.8 A |
Average drying rate during power application /g/h | 15.03 ± 0.18 | 28.44 ± 1.46 | 21.88 ± 0.41 | 30.97 ± 0.65 |
Average specific forward power /W/g | 0.063 ± 0.002 C | 0.093 ± 0.002 B | 0.098 ± 0.002 B | 0.111 ± 0.004 A |
Average energy efficiency /% | 24.6 ± 0.3 D | 92.4 ± 0.3 A | 52.1 ± 0.4 C | 83.6 ± 0.4 B |
Average specific dissipated power /W/g | 0.016 ± 0.000 | 0.086 ± 0.002 | 0.052 ± 0.001 | 0.093 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sickert, T.; Bergmann, R.; Christoph, J.; Gaukel, V. A Time-Saving Approach to Parameter Studies in Microwave-Assisted Freeze Drying. Processes 2023, 11, 2886. https://doi.org/10.3390/pr11102886
Sickert T, Bergmann R, Christoph J, Gaukel V. A Time-Saving Approach to Parameter Studies in Microwave-Assisted Freeze Drying. Processes. 2023; 11(10):2886. https://doi.org/10.3390/pr11102886
Chicago/Turabian StyleSickert, Till, Richy Bergmann, Jana Christoph, and Volker Gaukel. 2023. "A Time-Saving Approach to Parameter Studies in Microwave-Assisted Freeze Drying" Processes 11, no. 10: 2886. https://doi.org/10.3390/pr11102886
APA StyleSickert, T., Bergmann, R., Christoph, J., & Gaukel, V. (2023). A Time-Saving Approach to Parameter Studies in Microwave-Assisted Freeze Drying. Processes, 11(10), 2886. https://doi.org/10.3390/pr11102886