Urban Regional Building Energy Planning Model under the Guidance of Network Flow Theory
Abstract
:1. Introduction
2. Literature Review
3. Research Method
3.1. Network Flow Theory and Energy Circulation in Regional Building Energy System
3.2. Construction of Summer Regional Building Energy Planning Model
3.3. Busacker-Gowan Iterative Method to Solve the Model
4. Result
4.1. Performance Verification of Regional Building Energy Planning Model
4.2. Application Effect of Regional Building Energy Planning Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Index | Abbreviation | Unit |
Busacker Gowan | BG | / |
Maximum flow | / | piece |
Minimum cost | / | 100 million dollar |
Accuracy, accuracy, recall rate and specificity | / | % |
Power consumption | / | kWh |
Load percentage | / | % |
Time percentage | / | % |
Grid power | / | / |
Shallow geothermal layer | / | / |
Solar energy | / | / |
Split air conditioning | / | / |
Multiple on-line | / | / |
Ground source heat pump | / | / |
Solar heater | / | / |
Cooling of ordinary residential buildings | / | / |
Domestic hot water | / | / |
References
- Perera, P.; Hewage, K.; Alam, M.S.; Merida, W.; Sadiq, R. Scenario-based economic and environmental analysis of clean energy incentives for households in Canada: Multi criteria decision making approach. J. Clean. Prod. 2018, 198, 170–186. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q. Morphological characteristics of rural settlements from morphogenesis perspective: A case study of rural settlements in Heilongjiang Province, China—ScienceDirect. Energy Procedia 2019, 157, 1266–1277. [Google Scholar] [CrossRef]
- Nam, H.R.; Kim, S.H.; Han, S.Y.; Lee, S.J.; Hong, W.H.; Kim, J.H. Statistical methodology for the definition of standard model for energy analysis of residential buildings in Korea. Energies 2020, 13, 5796. [Google Scholar] [CrossRef]
- Cao, B.; Yan, Y.; Wang, Y.; Liu, X.; Lin, J.C.-W.; Sangaiah, A.K.; Lv, Z. A multiobjective intelligent decision-making method for multistage placement of PMU in power grid enterprises. IEEE Trans. Ind. Inform. 2022, 1–9. [Google Scholar] [CrossRef]
- Downs, T.J.; Zimmerman, M.; Altonaga, N. Unlocking high sustainable energy potential in Zambia: An integrative collaborative project approach. J. Sustain. Dev. 2020, 13, 59–77. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Y.; Haghighat, F.; Lu, J.; Feng, G. Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model. Energy 2019, 172, 141–154. [Google Scholar] [CrossRef]
- Li, G.; Tang, P.; Chen, X.; Xiao, G.; Meng, M.; Ma, C.; Shi, L. Target control and expandable target control of complex networks. J. Frankl. Inst. 2019, 357, 3541–3564. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, X.G.; Yang, W.M.; Ma, Z.Y. A network flow based energy-efficient backhauling algorithm for mm-wave small cell networks. J. Comput. Sci. 2019, 30, 155–167. [Google Scholar]
- Chen, P.Z.; Pei, J.A.; Lu, W.Q.; Li, M.Z. A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance. Neurocomputing 2022, 497, 64–75. [Google Scholar] [CrossRef]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- Mamo, G.E.; Marence, M.; Hurtado, J.; Franca, M.J. Optimization of run-of-river hydropower plant capacity. Dam Eng. 2018, 29, 29–39. [Google Scholar]
- Wang, J.; Meng, Q.; Zou, Y.; Qi, Q.; Tan, K.; Santamouris, M.; He, B.-J. Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: A review of its benefits, key parameters, and co-benefits approach. Water Res. 2022, 221, 118755. [Google Scholar] [CrossRef] [PubMed]
- Sathaporn, O.; Elise, M.H. Noisy genetic algorithm for stochastic, time-varying minimum time network flow problem. Transp. Res. Rec. J. Transp. Res. Board 2010, 2196, 75–82. [Google Scholar]
- Mamo, G.E.; Marence, M.; Hurtado, J.; Franca, M.J. Development of wood pellets processing industry for renewable energy. IOP Conf. Ser. Earth Environ. Sci. 2020, 487, 012014–012124. [Google Scholar]
- Petrichenko, K.; Urge-Vorsatz, D.; Cabeza, L.F. Modeling global and regional potentials for building-integrated solar energy generation. Energy Build. 2019, 198, 329–339. [Google Scholar] [CrossRef]
- Chen, S.; Liu, P.; Li, Z. Multi-regional power generation expansion planning with air pollutants emission constraints. Renew. Sustain. Energy Rev. 2019, 112, 382–394. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhang, X.T.; Shi, G.H. Integrated evaluation of distributed triple-generation systems using improved grey incidence approach. Energy 2008, 33, 1427–1437. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, H.; Na, H.S. Automatic multi-drone path planning using network flow algorithms. J. Inst. Control 2019, 25, 303–311. [Google Scholar]
- Valickova, P.; Elms, N. Potential gains from regional integration to reduce costs of electricity supply and access in Southern Africa. Energy Sustain. Dev. 2021, 62, 82–100. [Google Scholar] [CrossRef]
- Kalua, A. Urban residential building energy consumption by end-use in Malawi. Buildings 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.T.; Zhai, Q.Z.; Han, Z.H.; Guan, X.H. A linear AC unit commitment formulation: An application of data-driven linear power flow model. Int. J. Electr. Power Energy Syst. 2023, 145, 108673. [Google Scholar] [CrossRef]
- Taylor, Z.T.; Xie, Y.; Burleyson, C.D.; Voisin, N.; Kraucunas, I. A multi-scale calibration approach for process-oriented aggregated building energy demand models. Energy Build. 2019, 191, 82–94. [Google Scholar] [CrossRef]
- Wang, A.; Li, R.; You, S. Development of a data driven approach to explore the energy flexibility potential of building clusters. Appl. Energy 2018, 232, 89–100. [Google Scholar] [CrossRef]
- Gliesch, A.; Ritt, M. A hybrid heuristic for the maximum dispersion problem. Eur. J. Oper. Res. 2020, 288, 721–735. [Google Scholar] [CrossRef]
- Tarroja, B.; Shaffer, B.P.; Samuelsen, S. Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems. Energy 2018, 157, 460–471. [Google Scholar] [CrossRef]
- Song, S.; Li, Z.; Liu, Y.; Bai, Z. Research on abundance adaptive frequency control strategy of household temperature-control load. J. Phys. Conf. Ser. 2020, 1449, 012085–012093. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Song, G.; Wang, Y.; Huang, J.; Ruan, M.; Yu, Z. Traffic events oriented dynamic traffic assignment model for expressway network: A network flow approach. IEEE Intell. Transp. Syst. Mag. 2018, 10, 107–120. [Google Scholar] [CrossRef]
- He, K.; Wang, D.; Wang, B.; Feng, B.; Li, C. Foreground extraction combining graph cut and histogram shape analysis. IEEE Access 2019, 7, 176248–176256. [Google Scholar] [CrossRef]
- Nesticò, A.; Elia, C.; Naddeo, V. Sustainability of urban regeneration projects: Novel selection model based on analytic network process and zero-one goal programming. Land Use Policy 2020, 99, 104831. [Google Scholar] [CrossRef]
Network Layer | Category | Minimum Cost/100 Million Dollar | Maximum Flow/Piece |
---|---|---|---|
Energy supply layer | Grid power | 3.17 | 1253 |
Shallow geothermal layer | 1.53 | 1023 | |
Solar energy | 0.41 | 2153 | |
Energy conversion layer | Split air conditioning | 0.71 | 1625 |
Multiple on-line | 0.78 | 2106 | |
Ground source heat pump | 0.57 | 2415 | |
Solar heater | 0.41 | 1541 | |
Energy demand layer | Cooling of ordinary residential buildings | 0.90 | 1264 |
Domestic hot water | 0.82 | 2654 |
Model | Load Percentage | Time Percentage | Power Consumption |
---|---|---|---|
Existing energy planning model | 20% | 10% | 186 kWh |
40% | 20% | 743 kWh | |
60% | 40% | 2229 kWh | |
80% | 20% | 1486 kWh | |
100% | 10% | 281 kWh | |
Original energy planning model | 20% | 10% | 527 kWh |
40% | 20% | 2108 kWh | |
60% | 40% | 6324 kWh | |
80% | 20% | 4216 kWh | |
100% | 10% | 2635 kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zheng, P.; Zhan, Y.; Li, Z.; Shi, Z. Urban Regional Building Energy Planning Model under the Guidance of Network Flow Theory. Processes 2023, 11, 8. https://doi.org/10.3390/pr11010008
Liu J, Zheng P, Zhan Y, Li Z, Shi Z. Urban Regional Building Energy Planning Model under the Guidance of Network Flow Theory. Processes. 2023; 11(1):8. https://doi.org/10.3390/pr11010008
Chicago/Turabian StyleLiu, Jing, Pengqiang Zheng, Yubao Zhan, Zhiguo Li, and Zhaoxia Shi. 2023. "Urban Regional Building Energy Planning Model under the Guidance of Network Flow Theory" Processes 11, no. 1: 8. https://doi.org/10.3390/pr11010008
APA StyleLiu, J., Zheng, P., Zhan, Y., Li, Z., & Shi, Z. (2023). Urban Regional Building Energy Planning Model under the Guidance of Network Flow Theory. Processes, 11(1), 8. https://doi.org/10.3390/pr11010008