Heavy Metal Contamination in Soils from a Major Planting Base of Winter Jujube in the Yellow River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Heavy Metal Determination
2.3. Evaluation of the Metal Pollution
2.3.1. Nemerow Comprehensive Pollution Index
2.3.2. Geo-Accumulation Index
2.3.3. Potential Ecological Risk Index
3. Results and Discussion
3.1. Analysis of Heavy Metal Content in the Soil
3.2. Evaluation of Heavy Pollution in the Soils
3.3. Analyisis of Sources of Heavy Metals in the Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zheng, Y.; He, X.; Li, X.; Zhang, X. Analysis of the report on the national general survey of soil contamination. J. Agro-Environ. Sci. 2017, 36, 1689–1692. (In Chinese) [Google Scholar]
- Hu, W.; Tao, T.; Tian, K.; Zhao, Y.; Huang, B.; Luo, Y. Status and prospect of farmland soil environmental quality management in China. Acta. Ped. Sin. 2021, 58, 1094–1109. (In Chinese) [Google Scholar]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Su, Y.H.; Mcgrath, S.P.; Zhao, F.J. Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 2010, 328, 27–34. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines. Environ. Pollut. 2009, 157, 2435–2444. [Google Scholar] [CrossRef]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Peryea, F.J. Heavy metal contamination in deciduous tree fruit orchards: Implications for mineral nutrient management. Acta Hortic. 2001, 564, 31–39. [Google Scholar] [CrossRef]
- Guney, M.; Onay, T.T.; Copty, N.K. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environ. Monit. Assess. 2010, 164, 101–110. [Google Scholar] [CrossRef]
- Akoto, R.; Anning, A.K. Heavy Metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ. Adv. 2021, 3, 100028. [Google Scholar] [CrossRef]
- Qin, G.W.; Niu, Z.D.; Yu, J.D.; Li, Z.H.; Ma, J.Y.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, M. Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ. Monit. Assess. 2006, 120, 79–91. [Google Scholar] [PubMed]
- Kachenko, A.G.; Singh, B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 2006, 169, 101–123. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ali, N.M.; Islam, M.S.; Hossain, H.M.Z. Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia. Environ. Earth Sci. 2015, 73, 115–126. [Google Scholar] [CrossRef]
- Hu, Y.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 2020, 391, 122244. [Google Scholar]
- Chen, H.; Ma, G.; Hou, Y.; Yang, J.; Shen, Z.; Li, Y. Principal component analysis and evaluation of fruit quality of winter jujube under different cultivation modes. North. Hortic. 2022, 10, 41–48. (In Chinese) [Google Scholar]
- Zhou, S.; Dong, X.; Guo, W.; Sun, Y.; Liu, J.; Li, Y. Introduction of nutrition and variety of winter jujube. Spec. Econo. Anim. Plant. 2019, 2, 45–48. (In Chinese) [Google Scholar]
- You, X.S. The analysis model of winter jujube orchard jujube intercropping vegetables in Binzhou Zone. China Fruit Veg. 2016, 36, 58–59; 61. (In Chinese) [Google Scholar]
- Rui, Y.; Shen, L.; Sheng, J. Content of trace elements and heavy metals in Chinese winter jujube fruit. Spectroscopy Spectr. Anal. 2008, 28, 1928–1930. (In Chinese) [Google Scholar]
- Gao, Z.; Wang, M.; Pang, X.; Liu, Z. Influence of soil geochemistry to the qualtiy of winter jujube in Zhanhua. J. Anhui Agri. Sci. 2011, 39, 2711–2714. (In Chinese) [Google Scholar]
- Wang, C.; Liu, H.; Xia, X.; Liu, Z.; Wang, H.; Wang, H.; Zheng, W. The distribution of soil elements as well as its influence on the quality of Dongzao (winter jujube) in Zhanhua Dongzao growing area. Geophys Geochem Explor. 2012, 36, 641–650. [Google Scholar]
- Pang, X.; Dai, J.; Chen, L.; Liu, H.; Yu, C.; Han, L.; Ren, T.; Hu, X.; Wang, H.; Wang, Z.; et al. Soil geochemical background value of 17 cities in Shandong Province. Shandong. Land. Resour. 2019, 35, 46–56. (In Chinese) [Google Scholar]
- Nie, J.; Kuang, L.; Li, Z.; Xu, W.; Wang, C.; Chen, Q.; Li, A.; Zhao, X.; Xie, H.; Zhao, D.; et al. Assessing the mass fraction and potential health risk of heavy metals in China’s main deciduous fruits. J. Integr. Agric. 2016, 15, 1645–1655. [Google Scholar] [CrossRef]
- Ackah, M. Soil elemental concentrations, geoaccumulation index, non-carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana. Chemosphere 2019, 235, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water. Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kahangwa, C.A. Application of principal component analysis, cluster analysis, pollution index and geoaccumulation index in pollution assessment with heavy metals from gold mining operations, Tanzania. J. Geosci. Environ. Prot. 2022, 10, 303–317. [Google Scholar] [CrossRef]
- Ren, S.Y.; Song, C.Q.; Ye, S.J.; Cheng, C.X.; Gao, P.C. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. (In Chinese) [Google Scholar]
- Yong, M.; Zhang, M.; Wang, S.W.; Liu, G. Farmland soil heavy metal source analysis and evaluation in Bincheng County of Shandong Province, China. J. China Agric. Univ. 2014, 19, 119–125. (In Chinese) [Google Scholar]
- Wang, W.X.; Li, G.K.; Cao, S.P. Study on the quality analysis and site geological background of Dagang Winter Jujube in Tianjin. J. Shanxi Agric. Sci. 2019, 47, 1230–1234. (In Chinese) [Google Scholar]
- Yang, Y.; Shi, X.; Zhang, C. Spatial distribution and evaluation of heavy metal pollution of reclaiming village based on Nemerow integrated pollution index method. Res. Soil. Water. Conserv. 2016, 23, 338–343. (In Chinese) [Google Scholar]
- Xu, L.; Dai, H.P.; Skuza, L.; Xu, J.M.; Shi, J.C.; Wang, Y.J.; Shentu, J.; Wei, S.H. Integrated survey on the heavy metal distribution, sources and risk assessment of soil in a commonly developed industrial area. Ecotox. Environ. Safe 2022, 236, 113462. [Google Scholar]
- Liu, S.Q.; Peng, B.; Li, J.F. Ecological risk evaluation and source identification of heavy metal pollution in urban village soil based on XRF technique. Sustainability 2022, 14, 5030. [Google Scholar]
- Salami, H.A.; Matemilola, S.; Fasasi, S.A.; Ahmed, M.O.; Adigun, I.A.; Adeleke, A.A.; Fashina, S.M.; Olowosokedile, O. Towards achieving food security in Nigeria: Afuzzy comprehensive assessment of heavy metals contamination in organic fertilizers. Curr. Res. Agric. Sci. 2021, 8, 110–127. [Google Scholar]
- Lindvall, E.; Gustavsson, A.M.; Samuelsson, R.; Magnusson, T.; Palmborg, C. Ash as a phosphorus fertilizer to reed canary grass: Effects of nutrient and heavy metal composition on plant and soil. Glob. Chang. Biol. Bioenergy 2015, 7, 553–564. [Google Scholar]
- Tegenaw, A.; Sorial, G.A.; Demessie, E.S.; Han, C. Influence of water chemistry on colloid-size Cu-based pesticides particles: A case of Cu(OH)2 commercial fungicide/bactericide. Chemosphere 2020, 239, 124699. [Google Scholar] [PubMed]
- Blotevogel, S.; Oliva, P.; Sobanska, S.; Viers, J.; Schreck, E. The fate of Cu pesticides in vineyard soils: A case study using δ 65 Cu isotope ratios and EPR analysis. Chem. Geol. 2018, 477, 35–46. [Google Scholar]
Grade | p | Pollution Degree | Grade | Igeo | Pollution Degree |
---|---|---|---|---|---|
I | ≤0.7 | No pollution | I | ≤0 | No pollution |
II | 0.7–1 | Slight pollution | II | 0–1 | Slight pollution |
III | 1–2 | Moderate pollution | III | 1–2 | Moderate pollution |
IV | 2–3 | Severe pollution | IV | 2–3 | Moderate severepollution |
V | >3 | Extremely Severe pollution | V | 3–4 | Severe pollution |
VI | 4–5 | Relatively severe pollution | |||
VII | >5 | Extremely severe pollution |
Sample Points | Co | Ni | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|---|
J1 | 31.1 | 66.4 | 71.7 | 106.9 | 0.27 | 29.8 |
J2 | 20.4 | 34.2 | 56.2 | 73.9 | 0.18 | 17.7 |
J3 | 35.5 | 65.2 | 69.1 | 126.1 | 0.38 | 31.6 |
J4 | 38.6 | 81.1 | 70.0 | 130.6 | 0.33 | 32.5 |
J5 | 39.1 | 83.4 | 76.2 | 139.4 | 0.34 | 35.0 |
J6 | 30.0 | 62.4 | 53.6 | 96.4 | 0.27 | 30.5 |
J7 | 29.6 | 63.4 | 71.2 | 97.4 | 0.27 | 28.8 |
J8 | 27.4 | 57.8 | 50.2 | 85.1 | 0.23 | 26.4 |
J9 | 28.3 | 57.9 | 68.7 | 111.6 | 0.23 | 28.4 |
J10 | 26.5 | 62.4 | 59.7 | 99.6 | 0.18 | 20.7 |
J11 | 26.6 | 56.7 | 62.9 | 83.7 | 0.13 | 19.7 |
J12 | 22.6 | 50.0 | 96.4 | 101.1 | 0.22 | 20.2 |
J13 | 20.5 | 45.8 | 72.5 | 143.0 | 0.25 | 19.5 |
J14 | 19.7 | 44.3 | 68.1 | 69.9 | 0.13 | 16.2 |
J15 | 26.4 | 49.9 | 62.3 | 120.4 | 0.21 | 22.2 |
J16 | 25.9 | 60.5 | 65.6 | 90.8 | 0.23 | 27.4 |
J17 | 21.2 | 43.3 | 66.7 | 67.5 | 0.16 | 19.8 |
Background value | 12.2 | 29.5 | 23.8 | 69.1 | 0.147 | 22.1 |
Risk screening value | / | 190 | 200 | 300 | 0.6 | 170 |
Exceeding standard rate (%) | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sample Points | p | Pollution Degree | Sample Points | p | Pollution Degree |
---|---|---|---|---|---|
J1 | 0.40 | No pollution | J10 | 0.31 | No pollution |
J2 | 0.27 | No pollution | J11 | 0.28 | No pollution |
J3 | 0.53 | No pollution | J12 | 0.41 | No pollution |
J4 | 0.48 | No pollution | J13 | 0.41 | No pollution |
J5 | 0.49 | No pollution | J14 | 0.29 | No pollution |
J6 | 0.39 | No pollution | J15 | 0.35 | No pollution |
J7 | 0.39 | No pollution | J16 | 0.35 | No pollution |
J8 | 0.34 | No pollution | J17 | 0.29 | No pollution |
J9 | 0.36 | No pollution |
Eir | RI | |||||
---|---|---|---|---|---|---|
Ni | Cu | Zn | Cd | Pb | ||
Minimum | 0.90 | 1.25 | 0.23 | 6.52 | 0.48 | 10.10 |
Maximum | 2.19 | 2.41 | 0.48 | 19.13 | 1.03 | 23.92 |
Average | 1.52 | 1.68 | 0.34 | 11.84 | 0.74 | 16.12 |
Standard deviation | 0.34 | 0.26 | 0.08 | 3.54 | 0.17 | 4.06 |
Potential ecological hazard | Slight | Slight | Slight | Slight | Slight | Slight |
Co | Ni | Cu | Zn | Cd | Pb | |
---|---|---|---|---|---|---|
Co | 1.00 | |||||
Ni | 0.941 ** | 1.00 | ||||
Cu | 0.060 | 0.131 | 1.00 | |||
Zn | 0.600 * | 0.572 * | 0.352 | 1.00 | ||
Cd | 0.819 ** | 0.720 ** | 0.220 | 0.749 ** | 1.00 | |
Pb | 0.917 ** | 0.875 ** | 0.040 | 0.550 * | 0.866 ** | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, C.; Zhang, Z.; Zhao, D.; Zou, M.; Huang, W.; Wang, X.; Jin, J.; Zhang, Y.; Yang, Q.; Xie, W.; et al. Heavy Metal Contamination in Soils from a Major Planting Base of Winter Jujube in the Yellow River Delta, China. Processes 2022, 10, 1777. https://doi.org/10.3390/pr10091777
Shan C, Zhang Z, Zhao D, Zou M, Huang W, Wang X, Jin J, Zhang Y, Yang Q, Xie W, et al. Heavy Metal Contamination in Soils from a Major Planting Base of Winter Jujube in the Yellow River Delta, China. Processes. 2022; 10(9):1777. https://doi.org/10.3390/pr10091777
Chicago/Turabian StyleShan, Changqing, Zaiwang Zhang, Deyong Zhao, Meiling Zou, Wenwen Huang, Xiangrui Wang, Jianchao Jin, Yanpeng Zhang, Qian Yang, Wenjun Xie, and et al. 2022. "Heavy Metal Contamination in Soils from a Major Planting Base of Winter Jujube in the Yellow River Delta, China" Processes 10, no. 9: 1777. https://doi.org/10.3390/pr10091777
APA StyleShan, C., Zhang, Z., Zhao, D., Zou, M., Huang, W., Wang, X., Jin, J., Zhang, Y., Yang, Q., Xie, W., & Li, J. (2022). Heavy Metal Contamination in Soils from a Major Planting Base of Winter Jujube in the Yellow River Delta, China. Processes, 10(9), 1777. https://doi.org/10.3390/pr10091777