Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Eluents
2.2. Preparation of Functional Microspheres
2.3. Measurements
2.4. Batch Adsorption Test
3. Results
3.1. Visualization of Microspheres
3.2. ATR-FTIR Spectroscopy
3.3. DSC Analysis
3.4. Batch Adsorption Test
3.4.1. Sorption Capacities
3.4.2. Kinetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, L.R.; Rodrigues, J.A.V.; Adarme, O.F.H.; Melo, T.M.S.; Gurgel, L.V.A.; Gil, L.F. Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution. J. Colloid Interface Sci. 2017, 494, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.T.; Barros, A.Z.B.; Morais, A.I.S.; Carvalho Melo, A.L.F.; Bezerra, R.D.S.; Osajima, J.A.; Silva-Filho, E.C. Application of water hyacinth biomass (Eichhornia crassipes) as an adsorbent for methylene blue dye from aqueous medium: Kinetic and isothermal study. Polymers 2022, 14, 2732. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, P.; Xu, F.; Sun, B.; Hong, G.; Bao, L. Adsorption of methylene blue on azo dye wastewater by molybdenum disulfide nanomaterials. Sustainability 2022, 14, 7585. [Google Scholar] [CrossRef]
- Lara, L.; Cabral, I.; Cunha, J. Ecological approaches to textile dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Wołowicz, A.; Hubicki, Z. Strongly basic anion exchange resin based on a cross-linked polyacrylate for simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II) and phenol removal. Molecules 2022, 27, 2096. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 117, 137222. [Google Scholar] [CrossRef]
- Podkościelna, B.; Kołodyńska, D. A new type of cation-exchange polymeric microspheres with pendant methylenethiol groups. Polym. Adv. Technol. 2013, 24, 866–872. [Google Scholar] [CrossRef]
- Goliszek, M.; Podkościelna, B.; Fila, K.; Riazanova, A.V.; Aminzadeh, S.; Sevastyanova, O.; Gun’ko, V.M. Synthesis and structure characterization of polymeric nanoporous microspheres with lignin. Cellulose 2018, 25, 5843–5862. [Google Scholar] [CrossRef] [Green Version]
- Wawrzkiewicz, M.; Podkościelna, B.; Podkościelny, P. Application of functionalized DVB-co-GMA polymeric microspheres in the enhanced sorption process of hazardous dyes from dyeing baths. Molecules 2020, 25, 5247. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Badawi, A.K.; Elkodous, M.A.; Ali, G.M.A. Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: An overview. RSC Adv. 2021, 11, 36528–36553. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Application of weak base anion exchanger in sorption of tartrazine from aqueous medium. Solvent Extr. Ion Exch. 2010, 28, 845–863. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Equilibrium and kinetic studies on the adsorption of acidic dye by the gel anion exchanger. J. Hazard. Mater. 2009, 172, 868–874. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Remazol Black B removal from aqueous solutions and wastewater using weakly basic anion exchange resins. Cent. Eur. J. Chem. 2011, 9, 867–876. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Kunduzcu, G.; Arica, M.Y. Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes. Polym. Eng. Sci. 2019, 60, 192–201. [Google Scholar] [CrossRef]
- Vidhyadevi, T.; Arukkani, M.; Selvaraj, K.; Premkumar, M.P.; Ravikumar, L.; Sivanesan, S. A study on the removal of heavy metals and anionic dyes from aqueous solution by amorphous polyamide resin containing chlorobenzalimine and thioamide as chelating groups. Korean J. Chem. Eng. 2015, 32, 650–660. [Google Scholar] [CrossRef]
- Masoumi, A.; Ghaemy, M. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride). eXPRESS Polym. Lett. 2014, 8, 187–196. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, A.; Malkoc, E. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile. Appl. Surf. Sci. 2014, 299, 105–115. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. Adsorptive removal of auramine-O: Kinetic and equilibrium study. J. Hazard. Mater. 2007, 143, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Gościańska, J.; Marciniak, M.; Pietrzak, R. The effect of surface modification of mesoporous carbons on auramine-O dye removal from water. Adsorption 2015, 22, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, M.; Wawrzkiewicz, M.; Onyszko, M.; Medykowska, M.; Nosal-Wiercińska, A.; Bogatyrov, V. Carbon-silica composite as adsorbent for removal of hazardous C.I. Basic Yellow 2 and C.I. Basic Blue 3 dyes. Materials 2021, 14, 3245. [Google Scholar] [CrossRef] [PubMed]
- Wawrzkiewicz, M.; Podkościelna, B.; Jesionowski, T.; Klapiszewski, Ł. Functionalized microspheres with co-participated lignin hybrids as a novel sorbents for toxic C.I. Basic Yellow 2 and C.I. Basic Blue 3 dyes removal from textile sewage. Ind. Crops Prod. 2022, 180, 114785. [Google Scholar] [CrossRef]
- Laribi, K.; Sahmoune, M.N. Equilibrium studied of auramine O adsorption on modified globe Artichoke leaves. Res. J. Chem. Environ. Sci. 2016, 4, 44–52. [Google Scholar]
- Şenol, Z.M.; Çetinkaya, S.; Yenidünya, A.F.; Başoğlu-Ünal, F.; Ece, A. Epichlorohydrin and tripolyphosphate-crosslinked chitosan–kaolin composite for auramine O dye removal from aqueous solutions: Experimental study and DFT calculations. Int. J. Biol. Macromol. 2022, 199, 318–330. [Google Scholar] [CrossRef]
- YieChen, L.; Priyanthab, N.; Lim, L.B.L. Ipomoea aquatica roots as environmentally friendly and green adsorbent for efficient removal of Auramine O dye. Surf. Interf. 2020, 20, 100543. [Google Scholar]
- Liu, L.-E.; Yu, F.; Liu, J.; Han, X.; Zhang, H.; Zhang, B. Removal of auramine O from aqueous solution using sesame leaf: Adsorption isotherm and kinetic studies. Asian J. Chem. 2013, 25, 1991–1998. [Google Scholar] [CrossRef]
Copolymer | VBCl (g) | DVB (g) | EGDMA (g) | AIBN (g) |
---|---|---|---|---|
poly(DVB) | 0 | 20 | 0 | 0.200 |
DVB-VBCl | 11.69 | 10 | 0 | 0.217 |
poly(EGDMA) | 0 | 0 | 20 | 0.200 |
EGDMA-VBCl | 7.67 | 0 | 10 | 0.176 |
Isotherm Model | Parameters | poly(DVB) | DVB-VBCl | poly(EGDMA) | EGDMA-VBCl |
---|---|---|---|---|---|
Langmuir | Q0 (mg/g) | 141.7 | 239.3 | 81.0 | 93.9 |
kL (L/mg) | 0.033 | 0.019 | 0.106 | 0.067 | |
R2 | 0.549 | 0.149 | 0.399 | 0.669 | |
Freundlich | kF (mg1−1/n L1/n/g) | 4.56 | 4.97 | 7.85 | 5.80 |
1/n | 0.910 | 0.919 | 0.732 | 0.846 | |
R2 | 0.995 | 0.989 | 0.980 | 0.997 | |
Temkin | bT (J g/mol mg) | 294.3 | 296.5 | 359.1 | 308.7 |
A (L/mg) | 2.62 | 2.66 | 7.02 | 3.62 | |
R2 | 0.767 | 0.725 | 0.664 | 0.756 |
Adsorbent | Equilibrium Data | Ref. |
---|---|---|
Clay mineral from Turkey | Langmuir model: qe = 833.3–714.28 mg/g at 25–45 °C | [23] |
Bagasse fly ash | Langmuir model: qe = 31.18 mg/g at 30 °C | [24] |
Mesoporous carbons | Langmuir model: qe = 175–360 mg/g at 30–60 °C | [25] |
C/SiO2 composite | Freundlich model: kF = 27.37–55.41 mg1−1/n L1/n/g T = 20–60 °C, | [26] |
EGDMA + DVB + TEVS + ZrO2 − SiO2 + Lignin | Freundlich model: kF = 11.1–45.7 mg1−1/n L1/n/g at 20–60 °C | [27] |
Modified globe Artichoke leaves | Langmuir model: qe = 344.8 mg/g at 25 °C | [28] |
poly(DVB), DVB-VBCl, poly(EGDMA), EGDMA-VBCl | Freundlich model: kF = 4.56–7.85 mg1−1/n L1/n/g at 25 °C | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzkiewicz, M.; Podkościelna, B. Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal. Processes 2022, 10, 1568. https://doi.org/10.3390/pr10081568
Wawrzkiewicz M, Podkościelna B. Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal. Processes. 2022; 10(8):1568. https://doi.org/10.3390/pr10081568
Chicago/Turabian StyleWawrzkiewicz, Monika, and Beata Podkościelna. 2022. "Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal" Processes 10, no. 8: 1568. https://doi.org/10.3390/pr10081568
APA StyleWawrzkiewicz, M., & Podkościelna, B. (2022). Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal. Processes, 10(8), 1568. https://doi.org/10.3390/pr10081568