Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Establishment of Micromachining System
2.3. Experimental Method
3. Results and discussion
3.1. Subsection AFM Characterization
3.2. XPS Detection
3.3. Sessile Water Contact Angle Detection
3.4. Nanofriction Analysis of Self-Assembled Film Based on AFM
- (1)
- The initial friction force under one load was different. This also proves that the chemical composition of the silicon surface changed before and after assembly.
- (2)
- The slope of the friction signal and the load relation curve on the surface of the sample after assembly was small; that is, the friction coefficient of the self-assembled sample was small, which indicates that the friction characteristic of the surface before and after assembly were obviously different. The friction signal of the SAM after assembly changed slightly with the increase in load, while the friction signal of the Si-H before assembly changed greatly with the increase in load.
- (3)
- The friction signal on the SAM surface after assembly was stronger than that on the Si-H surface before assembly; in other words, the friction on the SAM surface after assembly was greater.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S.G.; Salama, K.N.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef] [PubMed]
- Wei, O.Y.; Han, J.; Wang, W. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization. Lab Chip 2017, 17, 3772–3784. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Xiong, S.; Chin, L.K.; Yang, Y.; Zhang, J.B.; Ser, W.; Wu, J.H.; Chen, T.N.; Yang, Z.C.; Hao, Y.L.; et al. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab Chip 2017, 17, 2443–2450. [Google Scholar] [CrossRef]
- Shang, W.; Liu, Y.; Kim, E.Y.; Tao, C.Y.; Payne, G.F.; Bentley, W.E. Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. Lab Chip 2018, 18, 3578–3587. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.W.; Liu, S.S.; Peng, R.T.; Sun, H.; Jiang, S.Q. Development of a micro/nano composite super-hydrophobic silicon surface with nail-shaped texture/dual self-assembly monolayers and its wetting behavior. Appl. Surf. Sci. 2021, 544, 148803–148812. [Google Scholar] [CrossRef]
- Linford, M.R. The Chemomechanical Modification of Silicon with Macroscopic Diamond Tips and AFM Tips with Extension to Laser-Modification of the Material, Starting from Its Roots in Monolayers on Hydrogen-Terminated Silicon. Encycl. Interfacial Chem. 2018, 18, 842–863. [Google Scholar] [CrossRef]
- Khung, Y.L.; Rusli, S.; Hsiao, Y.S. Thermal grafting of aniline derivatives to silicon (111) hydride surfaces. Appl. Surf. Sci. 2022, 580, 152257. [Google Scholar] [CrossRef]
- Eihadj, F.A.; Amiar, A.; Cherkaoui, M.; Chazalviel, J.N.; Ozanam, F. Study of organic grafting of the silicon surface from 4-nitrobenzene diazonium tetrafluoroborate. Electrochim. Acta 2012, 70, 318–324. [Google Scholar] [CrossRef]
- Squillace, O.; Perrault, T.; Gorczynska, M.; Caruana, A.; Bajorek, A.; Brotons, G. Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome. Colloids Surf. B Biointerfaces 2021, 197, 111427. [Google Scholar] [CrossRef]
- Sabbah, H.; Ababou-Girard, S.; Zebda, A.; David, D.; Deputier, S.; Perrin, A.; Guilloux-Viry, M.; Solal, F.; Godet, C. Thermal grafting of organic monolayers on amorphous carbon and silicon (111) surfaces: A comparative study. Diam. Relat. Mater. 2009, 18, 1074–1080. [Google Scholar] [CrossRef]
- Tran, T.N.; Nourry, A.; Pasetto, P.; Brotons, G. Covalent grafting of functional oligo-isoprenes onto silica-based surfaces to achieve robust elastomeric monolayers, thin films and coatings. Prog. Org. Coat. 2021, 159, 106375. [Google Scholar] [CrossRef]
- Yuan, S.D.; Zhang, H.; Yuan, S.L. Atomistic insights into resistance to oxidation of Si (111) grafted different organic chains. Comput. Mater. Sci. 2021, 191, 110336. [Google Scholar] [CrossRef]
- Yao, H.P.; Dai, Y.J.; Feng, J.C.; Wei, W.; Huang, W. Graft and characterization of 9-vinylcarbazole conjugated molecule on hydrogen-terminated silicon surface. Appl. Surf. Sci. 2006, 253, 1534–1539. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, M.Y.; Wang, T.Y.Y.; Xiong, L.S.; Hang, T.; Ling, H.Q.; Hu, A.M.; Gao, L.M.; Li, M. Design of thermally stable insulation film by radical grafting poly(methylacrylic acid) on silicon surface. Appl. Surf. Sci. 2019, 464, 627–635. [Google Scholar] [CrossRef]
- Banuls, M.J.; Victoria, G.P.; Barrios, C.A.; Puchades, R.; Maquieira, A. Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosens. Bioelectron. 2010, 25, 1460–1466. [Google Scholar] [CrossRef]
- Banu, M.; Simion, M.; Popescu, M.C.; Varasteanu, P.; Kisko, M.; Farcasanu, I.C. Specific detection of stable single nucleobase mismatch using SU-8 coated silicon nanowires platform. Talanta 2018, 185, 281–290. [Google Scholar] [CrossRef]
- Meng, J.S.; Liu, X.; Niu, C.j.; Pang, Q.; Li, J.T.; Liu, F.; Liu, Z.A.; Mai, L.Q. Advances in metal-organic framework coatings: Versatilie synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186. [Google Scholar] [CrossRef]
- Herze, N.; Hoeppener, S.; Schubert, U.S. Fabrication of Patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 2010, 46, 5634–5652. [Google Scholar] [CrossRef]
- Soliman, A.I.A.; Ichii, T.; Utsunomiya, T.; Sugimura, H. Chemical conversion of self-assembled hexadecyl monolayers with active oxygen species generated by vacuum ultraviolet irradiation in an atmospheric environment. Soft Matter 2015, 11, 5678–5687. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lua, Y.Y.; Min, T. Chemistry of olefinterminated homogeneous and mixed monolayers on scribed silicon. Chem. Mater. 2007, 19, 1671–1678. [Google Scholar] [CrossRef]
- Travis, L.N.; Lua, Y.Y.; Jiang, G.L. Arrays of chemomechanically patterned patches of homogeneous and mixed monolayers of 1-Alkenes and alcohols on single silicon surfaces. Angew. Chem. 2002, 114, 2353–2356. [Google Scholar] [CrossRef]
- Lua, Y.Y.; Travis, L.N.; Brent, A.W. Chemomechanical production of submicron edge width, functionalized, ~20 μm features on silicon. Langmuir 2003, 19, 985–988. [Google Scholar] [CrossRef]
- Shi, L.Q.; Sun, T.; Yan, Y.D.; Zhao, J.W.; Dong, S. Fabrication of functional structures at Si(100) surface by mechanical scribing in the presence of aryl diazonium salts. J. Vac. Sci. Technol. B 2009, 27, 1399–1402. [Google Scholar] [CrossRef]
- Niederhauser, T.L.; Jiang, G.L.; Lua, Y.Y.; Dorff, M.J.; Woolley, A.T.; Asplund, M.C.; Berges, D.A.; Linford, M.R. A New Method of Preparing Monolayers on Silicon and Patterning Silicon Surfaces by Scribing in the Presence of Reactive Species. Langmuir 2001, 17, 5889–5900. [Google Scholar] [CrossRef]
- Niederhauser, T.L.; Lua, Y.Y.; Sun, Y.; Jiang, G.L.; Strossman, G.S.; Pianetta, P.; Linford, M.R. Formation of (Functionalized) Monolayers and Simultaneous Surface Patterning by Scribing Silicon in the Presence of Alkyl Halides. Chem. Mater. 2002, 14, 27–29. [Google Scholar] [CrossRef]
- Li, Y.; Lua, Y.Y.; Michael, V.L. Chemomechanical functionalization and patterning of silicon. Acc. Chem. Res. 2005, 38, 933–942. [Google Scholar] [CrossRef]
- Brent, A.W.; Michael, J.M. Chemomechanical surface patterning and functionalization of silicon surfaces using an atomic force microscope. Appl. Phys. Lett. 2003, 82, 808–810. [Google Scholar] [CrossRef]
- Lavi, A.; Cohen, H.; Bendikov, T.; Vilan, A.; Cahen, D. Si–C-bound alkyl chains on oxide-free Si: Towards versatile solution preparation of electronic transport quality monolayers. Phys. Chem. Chem. Phys. 2011, 13, 1293–1296. [Google Scholar] [CrossRef]
- Shi, L.Q.; Sun, T.; Yan, Y.D.; Dong, S.; Zhao, J.W. Preparation and Characterization of 1-Hexadecene Thin Film on Silicon Surface. Nanotechnol. Precis. Eng. 2008, 6, 410–414. [Google Scholar] [CrossRef]
- Jiang, G.L.; Niederhauser, T.L.; Davis, S.D.; Lua, Y.Y.; Cannon, B.R.; Dorff, M.J.; Howell, L.L.; Magleby, S.P.; Linford, M.R. Stability of alkyl monolayers on chemomechanically scribed silicon to air, water, hot acid, and X-rays. Colloids Surf. A Physicochem. Eng. Asp. 2003, 226, 9–16. [Google Scholar] [CrossRef]
- Zhou, J.F.; Ren, Z.H.; Yang, S.R. Preparation and Nanotribological Behavior of Octadecene Reaction Film on Single Crystal Silicon Substrate. Tribology 2002, 22, 309–401. [Google Scholar] [CrossRef]
- Zhao, J.W.; Kohei, U. Electron Transfer through organic monolayers directly bonded to silicon probed by current sensing atomic force microscopy: Effect of chain length and applied force. J. Phys. Chem. B 2004, 108, 17129–17135. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Su, B.; Zhou, B.; Wang, H.G.; Meng, J.H. One-pot synthesis and sele-assembly of anti-wear octadecyltrichlorosilane/silica nanoparticles composite films on silicon. Appl. Surf. Sci. 2020, 508, 145187. [Google Scholar] [CrossRef]
- Eren, N.; Burg, O.; Michman, E.; Popov, I.; Shenhar, R. Gold nanoparticle arrays organized in mixed patterns through directed self-assembly of ultrathin block copolymer films on topographic substrates. Polymer 2022, 245, 124727. [Google Scholar] [CrossRef]
- Morgan, D.J. Comments on the XPS Analysis of Carbon Materials. C 2021, 3, 51. [Google Scholar] [CrossRef]
- Briggs, D.; Seah, M.P. Practical Surface Analysis; John Willy & Sons, Inc.: New York, NY, USA, 1983. [Google Scholar] [CrossRef]
- Miramond, C.; Vuillaume, D. 1-octadecene monolayers on Si(111) hydrogen-terminated surfaces: Effects of substrate doping. J. Appl. Phys. 2004, 96, 1529–1536. [Google Scholar] [CrossRef] [Green Version]
- Song, J.W.; Fan, L.W. Understanding the effects of pressure on the contact angle of water on a silicon surface in nitrogen gas environment: Contrasts between low- and high-temperature regimes. J. Colloid Interfaced Sci. 2022, 607, 1571–1579. [Google Scholar] [CrossRef]
- Hussain, S.; Xu, K.; Ye, S.L.; Lei, L.; Liu, X.M.; Xu, R.; Xie, L.M.; Cheng, Z.H. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys. 2019, 14, 33401. [Google Scholar] [CrossRef]
- Chung, K.H.; Pratt, J.R.; Reitsma, M.G. Lateral force calibration: Accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 2010, 26, 1386–1394. [Google Scholar] [CrossRef]
Peak Position | Element Content before Assembly | Element Content after Self-Assembly | |
---|---|---|---|
Peak ID | Center/eV | AT% | AT% |
C1s | 284.6 | 18.0 | 50.0 |
O1s | 531.6 | 42.8 | 27.6 |
Si2p | 103.4 | 39.2 | 22.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Yu, F.; Hang, Z. Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method. Processes 2022, 10, 1090. https://doi.org/10.3390/pr10061090
Shi L, Yu F, Hang Z. Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method. Processes. 2022; 10(6):1090. https://doi.org/10.3390/pr10061090
Chicago/Turabian StyleShi, Liqiu, Feng Yu, and Zhouming Hang. 2022. "Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method" Processes 10, no. 6: 1090. https://doi.org/10.3390/pr10061090
APA StyleShi, L., Yu, F., & Hang, Z. (2022). Fabrication of Multiscale 1-Octadecene Monolayer Patterned Arrays Based on a Chemomechanical Method. Processes, 10(6), 1090. https://doi.org/10.3390/pr10061090