Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Instruments and Conditions
2.3. Preparation of the DVB/Carbon/PDMS Coating by One-Pot Synthesis
2.4. Solid Phase Microextraction Method
2.5. Qualitative and Quantitative Analysis of Volatile Compounds
3. Results and Discussion
3.1. Characterization of the Prepared SPME
3.1.1. Structure of Coating
3.1.2. Thermal Stability of Coating
3.1.3. Surface Morphology of Coating
3.1.4. The Effect of SPME Fiber
3.1.5. Comparison between Synthesized DVB/Carbon/PDMS and Commercial DVB/CAR/PDMS Coatings
3.2. Optimization of HS-SPME
3.2.1. The effect of Extraction Temperature
3.2.2. The Effect of Extraction Time
3.2.3. The Effect of Salt Contents on the Extraction
3.2.4. The Effect of pH Value on Extraction
3.2.5. Stirring Speed
3.2.6. The Effect of Desorption Temperature
3.2.7. The Effect of Desorption Time
3.2.8. The Effect of Sample Volume
3.3. Quantitative Analysis of Volatile Compounds
3.4. Application of SPME Fiber for Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leach, J.; Blanch, A.; Bianchi, A.C. Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant. Atmos. Environ. 1999, 33, 4309–4325. [Google Scholar] [CrossRef]
- Suzuki, N.; Nakaoka, H.; Nakayama, Y.; Tsumura, K.; Takaguchi, K.; Takaya, K.; Eguchi, A.; Hanazato, M.; Todaka, E.; Mori, C. Association between sum of volatile organic compounds and occurrence of building-related symptoms in humans: A study in real full-scale laboratory houses. Sci. Total Environ. 2021, 750, 141635. [Google Scholar] [CrossRef] [PubMed]
- Peel, A.M.; Wilkinson, M.; Sinha, A.; Loke, Y.K.; Fowler, S.J.; Wilson, A.M. Volatile organic compounds associated with diagnosis and disease characteristics in asthma—A systematic review. Respir. Med. 2020, 169, 105984. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Mesquita, A.; Zamora-Obando, H.R.; Neves dos Santos, F.; Schmidt-Filho, J.; Cordeiro de Lima, V.; D’Almeida Costa, F.; Piana de Andrade, V.; Nogueira Eberlin, M.; Colnaghi Simionato, A.V. Volatile organic compounds analysis optimization and biomarker discovery in urine of Non-Hodgkin lymphoma patients before and during chemotherapy. Microchem. J. 2020, 159, 105479. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere 2020, 250, 126338. [Google Scholar] [CrossRef]
- Nair, A.T.; Senthilnathan, J.; Nagendra, S.M.S. Emerging perspectives on VOC emissions from landfill sites: Impact on tropospheric chemistry and local air quality. Process Saf. Environ. Prot. 2019, 121, 143–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Ning, X.; Li, Y.; Wang, J.; Cui, H.; Meng, J.; Teng, C.; Wang, G.; Shang, X. Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag. 2021, 126, 771–780. [Google Scholar] [CrossRef]
- Franzmann, P.D.; Heitz, A.; Zappia, L.R.; Wajon, J.E.; Xanthis, K. The formation of malodorous dimethyl oligosulphides in treated groundwater: The role of biofilms and potential precursors. Water Res. 2001, 35, 1730–1738. [Google Scholar] [CrossRef]
- Kiragosyan, K.; Picard, M.; Sorokin, D.Y.; Dijkstra, J.; Klok, J.B.M.; Roman, P.; Janssen, A.J.H. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams. J. Hazard. Mater. 2020, 386, 121916. [Google Scholar] [CrossRef]
- Panigrahy, N.; Priyadarshini, A.; Sahoo, M.M.; Verma, A.K.; Daverey, A.; Sahoo, N.K. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27, 102423. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Ismail, A.F.; Abdul Karim, Z.; Abdullah, M.S.; Hafeez, A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf. Environ. Prot. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Z.; Luo, Y.; Bai, Y.; Fan, J. Bioremediation of phenolic pollutants by algae—Current status and challenges. Bioresour. Technol. 2022, 350, 126930. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Meng, N.; Li, Y.; Wang, J. Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): A critical review. J. Hazard. Mater. 2021, 416, 126181. [Google Scholar] [CrossRef]
- Arora, P.K.; Sharma, A.; Bae, H. Microbial Degradation of Indole and Its Derivatives. J. Chem. 2015, 2015, 129159. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, H.; Li, M.; Song, Q. Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. J. Electroanal. Chem. 2019, 832, 129–136. [Google Scholar] [CrossRef]
- Pathak, A.K.; Viphavakit, C. A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sens. Actuators A Phys. 2022, 338, 113455. [Google Scholar] [CrossRef]
- Huang, Y.; Che, X.; Jin, D.; Xiu, G.; Duan, L.; Wu, Y.; Gao, S.; Duan, Y.; Fu, Q. Mobile monitoring of VOCs and source identification using two direct-inlet MSs in a large fine and petroleum chemical industrial park. Sci. Total Environ. 2022, 823, 153615. [Google Scholar] [CrossRef]
- Xu, M.L.; Gao, Y.; Wang, X.; Han, X.X.; Zhao, B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021, 10, 2473. [Google Scholar] [CrossRef]
- Souza-Silva, E.A.; Jiang, R.F.; Rodriguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends Anal. Chem. 2015, 71, 224–235. [Google Scholar] [CrossRef]
- Naseri, N.; Kharrazi, S.; Abdi, K.; Alizadeh, R. Fabrication of an SPME fiber based on ZnO@GA nanorods coated onto fused silica as a highly efficient absorbent for the analysis of cancer VOCs in water and urine. Anal. Chim. Acta 2021, 1183, 338983. [Google Scholar] [CrossRef]
- Delińska, K.; Machowski, G.; Kloskowski, A. Development of SPME fiber coatings with tunable porosity for physical confinement of ionic liquids as an extraction media. Microchem. J. 2022, 178, 107392. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Souza Silva, E.A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends Anal. Chem. 2013, 43, 24–36. [Google Scholar] [CrossRef]
- Pasandideh, Y.; Razmi, H. Introduction of a biowaste/graphene oxide nanocomposite as a coating for a metal alloy based SPME fiber: Application to screening of polycyclic aromatic hydrocarbons. Arab. J. Chem. 2020, 13, 8499–8512. [Google Scholar] [CrossRef]
- Konieczna, K.; Yavir, K.; Kermani, M.; Mielewczyk-Gryń, A.; Kloskowski, A. The new silica-based coated SPME fiber as universal support for the confinement of ionic liquid as an extraction medium. Sep. Purif. Technol. 2020, 252, 117411. [Google Scholar] [CrossRef]
- Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namiesnik, J. Current trends in solid-phase microextraction (SPME) fibre coatings. Chem. Soc. Rev. 2010, 39, 4524–4537. [Google Scholar] [CrossRef]
- Yu, R.-P.; Wang, L.-P.; Zhao, C.-K.; Wu, S.-F.; Song, Q.-J. Determination of Volatile Metabolites in Microcystis Aeruginosa Using Headspace-Solid Phase Microextraction Arrow Combined with Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2020, 48, 750–756. [Google Scholar] [CrossRef]
- Paiva, A.C.; Crucello, J.; de Aguiar Porto, N.; Hantao, L.W. Fundamentals of and recent advances in sorbent-based headspace extractions. TrAC Trends Anal. Chem. 2021, 139, 116252. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Panigrahi, S. Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review. Food Bioprocess Technol. 2011, 4, 1–26. [Google Scholar] [CrossRef]
- Marrubini, G.; Dugheri, S.; Cappelli, G.; Arcangeli, G.; Mucci, N.; Appelblad, P.; Melzi, C.; Speltini, A. Experimental designs for solid-phase microextraction method development in bioanalysis: A review. Anal. Chim. Acta 2020, 1119, 77–100. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Classification of Boal, Malvazia, Sercial and Verdelho wines based on terpenoid patterns. Food Chem. 2007, 101, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Alenyorege, E.A.; Ma, H.; Aheto, J.H.; Agyekum, A.A.; Zhou, C. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. LWT 2020, 117, 108666. [Google Scholar] [CrossRef]
- Ho, C.W.; Aida, W.M.W.; Maskat, M.Y.; Osman, H. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar. Food Chem. 2007, 102, 1156–1162. [Google Scholar] [CrossRef]
Analyte | Quantification Ions | Linear Range (ng/L) | Linear Equation | R2 | LOD a ρ/(ng/L) | LOQ b ρ/(ng/L) | RSD(%) n = 6 |
---|---|---|---|---|---|---|---|
dimethyl trisulfide | 126 | 10–1000 | y = 0.2533x − 0.2253 | 0.9935 | 3.0 | 10.0 | 2.8 |
dimethyl disulfide | 94 | 10–1000 | y = 0.0956x − 0.1167 | 0.9956 | 5.0 | 20.0 | 3.3 |
p-Cresol | 107 | 5–1000 | y = 0.9674x + 0.2662 | 0.9948 | 1.0 | 3.0 | 4.5 |
Phenol | 94 | 5–1000 | y = 0.1534x + 0.1387 | 0.9987 | 1.0 | 3.0 | 8.7 |
3-methylindole | 131 | 5–1000 | y = 0.0712x − 0.0034 | 0.9992 | 1.0 | 3.0 | 3.6 |
Compounds | Collecting Pool (ng/L) | Regulating Tank (ng/L) | Reaction Tank (ng/L) | Outlet Pool (ng/L) |
---|---|---|---|---|
Dimethyl trisulfide | 1.54 × 106 | 4.28 × 104 | 5.86 × 102 | 17.0 |
Dimethyl disulfide | 3.23 × 106 | 4.53 × 104 | 6.34 × 102 | 22.3 |
p-Cresol | 5.23 × 105 | 6.43 × 103 | 5.26 × 102 | 7.65 |
Phenol | 8.23 × 105 | 9.36 × 103 | 7.96 × 102 | 9.03 |
3-Methylindole | 1.03 × 104 | 6.38 × 102 | 84.5 | 2.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Yu, R.; Wu, S.; Yu, W.; Song, Q. Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes 2022, 10, 1045. https://doi.org/10.3390/pr10061045
Yu Z, Yu R, Wu S, Yu W, Song Q. Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes. 2022; 10(6):1045. https://doi.org/10.3390/pr10061045
Chicago/Turabian StyleYu, Zonghao, Ruipeng Yu, Shengfang Wu, Weijie Yu, and Qijun Song. 2022. "Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate" Processes 10, no. 6: 1045. https://doi.org/10.3390/pr10061045
APA StyleYu, Z., Yu, R., Wu, S., Yu, W., & Song, Q. (2022). Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes, 10(6), 1045. https://doi.org/10.3390/pr10061045